Cho là hai nghiệm phức của phương trình \({z^2} - 2z + 5 = 0\), biết \({z_1} - {z_2}\) có phần ảo là số thực âm. Tìm phần ảo của số phức = 2z_1^2 - z_2^2\).

Câu hỏi :

Cho \({z_1};\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 2z + 5 = 0\), biết \({z_1} - {z_2}\) có phần ảo là số thực âm. Tìm phần ảo của số phức \({\rm{w}} = 2z_1^2 - z_2^2\).

A. 3

B. -12

C. -3

D. 12

* Đáp án

B

* Hướng dẫn giải

Ta có \({z^2} - 2z + 5 = 0\)\( \Leftrightarrow \left[ \begin{array}{l}z = 1 + 2i\\z = 1 - 2i\end{array} \right.\)

Mà \({z_1} - {z_2}\) có phần ảo là số thực âm nên \(\left\{ \begin{array}{l}{z_1} = 1 - 2i\\{z_2} = 1 + 2i\end{array} \right..\)

\( \Rightarrow {\rm{w}} = 2z_1^2 - z_2^2 =  - 3 - 12i\).

Vậy phần ảo của số phức w là \( - 12.\)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 12 năm 2021

Số câu hỏi: 200

Copyright © 2021 HOCTAP247