Cho tích phân \(I = x + 3}}{x}dx} \). Nếu đặt \(t = \ln x\) thì:

Câu hỏi :

Cho tích phân \(I = \int\limits_1^e {\frac{{2\ln x + 3}}{x}dx} \). Nếu đặt \(t = \ln x\) thì:

A. \(I = \int\limits_1^e {\left( {2t + 3} \right)dt} .\)

B. \(I = \int\limits_0^1 {\left( {2t} \right)dt} .\)

C. \(I = \int\limits_0^1 {\left( {2t + 3} \right)dt} .\)

D. \(I = \int\limits_0^1 {\left( {2\ln t + 3} \right)dt} .\)

* Đáp án

C

* Hướng dẫn giải

Đặt \(t = \ln x \Rightarrow dt = \frac{{dx}}{x}\)

Đổi cận: \(\left\{ \begin{array}{l}x = 1 \Rightarrow t = 0\\x = e \Rightarrow t = 1\end{array} \right.\).

Khi đó ta có: \(I = \int\limits_0^1 {\left( {2t + 3} \right)dt} \)

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đề thi HK2 môn Toán 12 năm 2021

Số câu hỏi: 200

Copyright © 2021 HOCTAP247