Cho tam giác ABC có M, N lần lượt là trung điểm của BC và AC, AM và BN cắt nhau tại G.

Câu hỏi :

Cho tam giác ABC có M, N lần lượt là trung điểm của BC và AC, AM và BN cắt nhau tại G. Tỉ số GMAM  bằng :

A. 23

B. 13

C. 34

D. 32

* Đáp án

* Hướng dẫn giải

Hướng dẫn giải

Đáp án đúng là: B

Cho tam giác ABC có M, N lần lượt là trung điểm của BC và AC, AM và BN cắt nhau tại G. (ảnh 1)

Xét ∆ABC có:

AM là đường trung tuyến (M là trung điểm của BC);

BN là đường trung tuyến (N là trung điểm của AC).

AM và BN cắt nhau tại G.

Do đó G là trọng tâm của ∆ABC.

Suy ra AGAM=23 (1)

Ta có: AG = AM − GM

Thay vào (1) ta được:

 AMGMAM=23

 AMAMGMAM  =23

1 − GMAM =23

 GMAM= 1− 23 =13

 

Vậy GMAM =13 .

Copyright © 2021 HOCTAP247