Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A, AB = AC = b và có các cạnh bên bằng b. Khoảng cách giữa hai đường thẳng AB' và BC bằng

Câu hỏi :

Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A, AB = AC = b và có các cạnh bên bằng b. Khoảng cách giữa hai đường thẳng AB' và BC bằng

A. b

B. \(b\sqrt 3 \)

C. \(\frac{{b\sqrt 2 }}{2}\)

D. \(\frac{{b\sqrt 3 }}{3}\)

* Đáp án

D

* Hướng dẫn giải

Gọi I, K lần lượt là trung điểm BC, B'C'. Trong tam giác IAK kẻ đường cao IH.

Ta có \(BC{\rm{ || B'C'}} \Rightarrow {\rm{BC || }}\left( {AB'C'} \right)\). Khoảng cách giữa AB' và BC bằng khoảng cách giữa BC và mặt phẳng (AB'C').

Ta có \(BC \bot AI\) (vì \(\Delta ABC\) vuông cân), \(BC \bot IK\) nên \(BC \bot \left( {AIK} \right) \Rightarrow BC \bot IH\).

Do đó \(IH \bot \left( {AB'C'} \right)\) (vì \(IH \bot AK,IH \bot B'C'\)). Nên khoảng cách giữa AB' và BC bằng IH.

Ta có \(AI = \frac{{\sqrt 2 b}}{2}\) nên \(\frac{1}{{A{I^2}}} + \frac{1}{{I{K^2}}} = \frac{1}{{I{H^2}}} \Rightarrow IH = \frac{{b\sqrt 3 }}{3}\)

Copyright © 2021 HOCTAP247