Tập hợp tất cả các giá trị của tham số m để phương trình 4 (sin^4x + cos^4c) + sin^22x + 4m

Câu hỏi :

Tập hợp tất cả các giá trị của tham số m để phương trình 4sin4x+cos4x+sin22x+4m=4cos2x có nghiệm là đoạn a;b. Tính 2b - a.

A. 2

B. 3

C. 1

D. 4

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Ta có: 4sin4x+cos4x+sin22x+4m=4cos2x

4sin2x+cos2x22sin2xcos2x+sin22x4cos2x+4m=04sin22x4cos2x+4m=0cos22x4cos2x=4m3

Đặt t=cos2x t1;1. Ta có phương trình t24t=4m3* với t1;1.

Phương trình đã cho có nghiệm x khi và chỉ khi phương trình (*) có nghiệm t1;1.

Lập bảng biến thiên của hàm ft=t24t trên 1;1.

Tập hợp tất cả các giá trị của tham số m để phương trình 4 (sin^4x + cos^4c) + sin^22x + 4m (ảnh 1)

Từ bảng biến thiên ta thấy phương trình có nghiệm t1;1 khi và chỉ khi

34m352m0. Vậy a = -2; b = 0 suy ra 2v - a = 2.

Copyright © 2021 HOCTAP247