Cho hình chóp S.ABCD có ABCD là hình chữ nhật tâm I cạnh AB = 3a; BC = 4a. Hình

Câu hỏi :

Cho hình chóp S.ABCDABCD là hình chữ nhật tâm I cạnh AB = 3a; BC = 4a. Hình chiếu của S trên mặt phẳng (ABCD) là trung điểm của ID. Biết rằng SB tạo với mặt phẳng (ABCD) một góc 45o. Tính diện tích mặt cầu ngoại tiếp hình chóp S.ABCD

A. 25π2a2.

B. 125π4a2.

C. 125π2a2.

D. 4πa2.

* Đáp án

B

* Hướng dẫn giải

Đáp án B

Cho hình chóp S.ABCD có ABCD là hình chữ nhật tâm I cạnh AB = 3a; BC = 4a. Hình  (ảnh 1)

Gọi H là trung điểm của IDSHABCD 

Cho hình chóp S.ABCD có ABCD là hình chữ nhật tâm I cạnh AB = 3a; BC = 4a. Hình  (ảnh 2)

Trong mặt phẳng (SBD), qua I dựng đường thẳng Δ song song với SH. Suy ra  là trục đường tròn ngoại tiếp ABCD. Gọi M là trung điểm của SD.

Trong mặt phẳng (SBD), dựng đường trung trực của đoạn thẳng SD, cắt  tại O. Suy ra SO = OD.

Mà OA = OB = OC = OD nên O là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.

Ta có ABCD là hình chữ nhật tâm I cạnh AB = 3a; BC = 4a. và H là trung điểm DI.

Nên suy ra DI=5a2;BH=15a4;HI=5a4.

Ta có SB;ABCD=SBH^=45o

Xét tam giác SHB vuông ại H có SHB^=45o

Từ S dựng đường thẳng song song với BD, cắt Δ tại G.

=> SHIG là hình chữ nhật GI=15a4;SG=HI=5a4

Đặt OI = x. Ta có: R2=OD2=OI2+DI2=25a24+x21

Lại có: GO=GIOI=15a4x

Mà R2=SO2=SG2+GO2=25a216+15a4x2   2

Từ (1) và (2) => 25a24+x2=25a216+15a4x2x=5a4

Vậy bán kính mặt cầu ngoại tiếp hình chóp là R=25a24+5a42=554a

Suy ra diện tích mặt cầu cần tính là S=4πR2=125π4a2

 

Copyright © 2021 HOCTAP247