Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0; -2; -1), B(-2, -4, 3), C(1: 3: -1)

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0; -2; -1), B(-2, -4, 3), C(1: 3: -1) và mặt phẳng P:x+y2z3=0. Biết điểm Ma;b;cP thỏa mãn T=MA+MB+2MC đạt giá trị nhỏ nhất. Tính S = a + b + c

A. S = -1

B. S=12.

C. S = 0

D. S=12.

* Đáp án

C

* Hướng dẫn giải

Đáp án C

Ta có

T=MA+MB+2MC=4a2+4b2+4c2=4a2+b2+c24a+b2c212+12+22=432=26 

Do đó T=MA+MB+2MC đạt giá trị nhỏ nhất bằng 26. 

a1=b1=c2a+b2c3=0a=b=12c=1 

Copyright © 2021 HOCTAP247