Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S) có phương trình (x - 1)^2 + (y - 2)^2

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S) có phương trình x12+y22+z+12=1 . Viết phương trình mặt phẳng (Q) chứa trục hoành và tiếp xúc với mặt cầu (S).

* Đáp án

* Hướng dẫn giải

Mặt cầu (S) có tâm I(1; 2; -1) và bán kính R = 1.

Gọi vectơ pháp tuyến của mặt phẳng (Q) là nA,B,C với A2+B2+C20 

Vì mặt phẳng (Q) chứa trục hoành nên niOQA=0OQ 

=>  Phương trình mặt phẳngQ:By+Cz=0

Ta có mặt phẳng (Q) tiếp xúc mặt cầu (S) nên

dI;Q=12BCB2+C2=12BC2=B2+C23B24BC=0B3B4C=0B=03B4C=0

Với 3B - 4C = 0, chọn B = 4 => C = 3 phương trình mặt phẳng (Q) 4y + 3z = 0 

Với B = 0 ta có phương trình mặt phẳng (Q): Cz  = 0 <=> z = 0 

Vậy có hai mặt phẳng thỏa mãn yêu cầu bài toán là Q1:4y+3z=0;Q2:z=0  

Copyright © 2021 HOCTAP247