Tìm giá trị nhỏ nhất của hàm số f(x) biết rằng trên Đặt từ đẳng thức trên ta suy ra

Câu hỏi :

Tìm giá trị nhỏ nhất của hàm số f(x) biết rằng \[f(x + 2) = {x^2} - 3x + 2\;\] trên \(\mathbb{R}\)

A.\[ - \frac{1}{4}\]

B. \[\frac{1}{4}\]

C. \(\frac{1}{2}\)

D. 0

* Đáp án

* Hướng dẫn giải

Đặt \[t = x + 2 \Rightarrow x = t - 2\] từ đẳng thức trên ta suy ra

\[f\left( t \right) = {\left( {t - 2} \right)^2} - 3\left( {t - 2} \right) + 2 = {t^2} - 7t + 12\]

Suy ra \[f\left( x \right) = {x^2} - 7x + 12\]

\[ = {x^2} - 2.\frac{7}{2}x + {\left( {\frac{7}{2}} \right)^2} - \frac{1}{4}\]

\[ = {\left( {x - \frac{7}{2}} \right)^2} - \frac{1}{4} \ge - \frac{1}{4}\forall x \in R\]

Vậy \[Minf\left( x \right) = - \frac{1}{4}\] khi \[x = \frac{7}{2}\]

Đáp án cần chọn là: A

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài toán về đồ thị hàm số bậc hai !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247