Cho hàm số. Xét các mệnh đề sau:i) ii) Hàm số đã cho đồng biến trên iii) Giá trị nhỏ nhất của hàm số là m

Câu hỏi :

Cho hàm số \[f(x) = {x^2} + 2x - 3\].

A.1

B.2

C.3

D.4

* Đáp án

* Hướng dẫn giải

Ta có  \[f\left( {x - 1} \right) = {\left( {x - 1} \right)^2} + 2\left( {x - 1} \right) - 3 = {x^2} - 4\]

Với trục đối xứng \[x = - \frac{b}{{2a}} = - 1\] và hệ số \[a = 1 >0\] thì hàm số đồng biến trên \[\left( { - 1;\,\, + \infty } \right)\]

Biến đối \[f\left( x \right) = {x^2} + 2x - 3 = {\left( {x + 1} \right)^2} - 4 \ge - 4\] ⇒ GTNN của hàm số là −4 < 0

Dễ thấy \[f\left( x \right) = m \Leftrightarrow {\left( {x + 1} \right)^2} = m + 4\] nên để phương trình có nghiệm thì \[m + 4 \ge 0 \Leftrightarrow m \ge - 4\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài toán về đồ thị hàm số bậc hai !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247