A.\[{G_1}{G_2}//(ABD)\]
B. \[{G_1}{G_2}//(ABC)\]
C. \[B{G_1};A{G_2};CD\] đồng quy
D.\[{G_1}{G_2} = \frac{2}{3}AB\]
Gọi E là trung điểm của\[CD \Rightarrow {G_1} \in BE;{G_2} \in AE \Rightarrow B{G_1};A{G_2};CD\] đồng quy tại E. Suy ra C đúng.
Ta có:\[\frac{{E{G_1}}}{{EB}} = \frac{{E{G_2}}}{{EA}} = \frac{1}{3} \Rightarrow {G_1}{G_2}//AB\] và \[{G_1}{G_2} = \frac{1}{3}AB\] (Định lí Ta-let đảo)
Mà \[AB \subset \left( {ABD} \right) \Rightarrow {G_1}{G_2}//(ABD)\]
\[AB \subset \left( {ABC} \right) \Rightarrow {G_1}{G_2}//(ABC).\]
Suy ra A và B đúng. Vậy D sai
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247