A.\[3x\left( {1 + \sqrt 3 } \right)\]
B. \[2x\left( {1 + \sqrt 3 } \right)\]
C. \[x\left( {1 + \sqrt 3 } \right)\]
D. Không xác định
Trong mp(ABC) kẻ\[MF//IC\left( {F \in AC} \right)\] trong mp(SAB) kẻ \[ME//SI\left( {E \in SA} \right)\]
Do đó mp(P) chính là (MEF) và thiết diện tạo bởi mp(P) và tứ diện đều SABC là tam giác MEF.
Gọi aa là cạnh của tứ diện đều SABC.
Xét tam giác đều ABC và tam giác SAB là những tam giác đều cạnh a nên\[CI = SI = \frac{{a\sqrt 3 }}{2}\]
Trong (ABC) ta có:\[\frac{{AM}}{{AI}} = \frac{{ME}}{{SI}} \Leftrightarrow \frac{x}{{\frac{a}{2}}} = \frac{{ME}}{{\frac{{a\sqrt 3 }}{2}}} \Leftrightarrow ME = x\sqrt 3 .\]
Trong (SAB) ta có: \[\frac{{AM}}{{AI}} = \frac{{MF}}{{CI}} \Leftrightarrow \frac{x}{{\frac{a}{2}}} = \frac{{MF}}{{\frac{{a\sqrt 3 }}{2}}} \Leftrightarrow MF = x\sqrt 3 .\]
Ta lại có:\[\frac{{AM}}{{AI}} = \frac{{AF}}{{AC}} = \frac{{AE}}{{AS}} \Rightarrow EF//SC\] (Định lí Ta-let đảo)
\[ \Rightarrow \frac{{EF}}{{SC}} = \frac{{AF}}{{AC}} = \frac{{AM}}{{AI}} \Leftrightarrow \frac{{EF}}{a} = \frac{x}{{\frac{a}{2}}} \Leftrightarrow EF = 2x\]
Vậy chu vi tam giác MEF bằng \[ME + MF + EF = x\sqrt 3 + x\sqrt 3 + 2x = 2x\left( {1 + \sqrt 3 } \right)\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247