Cho hình chóp S.ABC, M là một điểm nằm trong tam giác ABC. Các đường thẳng qua MM và song song với SA,SB,SC cắt các mặt (SBC),(SAC),(SAB) lần lượt tại A′,B′,C′.

Câu hỏi :

Cho hình chóp S.ABC, M là một điểm nằm trong tam giác ABC. Các đường thẳng qua MM và song song với SA,SB,SC cắt các mặt (SBC),(SAC),(SAB) lần lượt tại A′,B′,C′. \[\frac{{MA'}}{{SA}} + \frac{{MB'}}{{SB}} + \frac{{MC'}}{{SC}}\] có giá trị không đổi bằng bao nhiêu khi M di động trong tam giác ABC?

A.\[\frac{1}{3}\]

B. \(\frac{1}{2}\)

C. 1

D. \[\frac{2}{3}\]

* Đáp án

* Hướng dẫn giải

Cho hình chóp S.ABC, M là một điểm nằm trong tam giác ABC. Các đường thẳng qua MM và song song với SA,SB,SC cắt các mặt (SBC),(SAC),(SAB) lần lượt tại A′,B′,C′.  (ảnh 1)

Trong (SAD) ta kẻ đường thẳng qua M và song song với SA cắt (SBC) tại A′.A′.

Trong (SCF) kẻ đường thẳng qua M và song song với SC cắt SF tại C′

\[MA'//SA \Rightarrow \frac{{MA'}}{{SA}} = \frac{{DM}}{{DA}} = \frac{{{S_{MBC}}}}{{{S_{ABC}}}}\]

Tương tự ta chứng minh được \[\frac{{MB'}}{{SB}} = \frac{{EM}}{{EB}} = \frac{{{S_{MAC}}}}{{{S_{ABC}}}}\] và\[\frac{{MC'}}{{SC}} = \frac{{FM}}{{FC}} = \frac{{{S_{MAB}}}}{{{S_{ABC}}}}\]

Do đó ta có: \[\frac{{MA'}}{{SA}} + \frac{{MB'}}{{SB}} + \frac{{MC'}}{{SC}} = \frac{{{S_{MBC}}}}{{{S_{ABC}}}} + \frac{{{S_{MAC}}}}{{{S_{ABC}}}} + \frac{{{S_{MAB}}}}{{{S_{ABC}}}} = 1\]

Đáp án cần chọn là: C

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Đường thẳng song song với mặt phẳng !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247