A.\[\frac{{40}}{9}\]
B. \[\frac{{24}}{9}\]
C. \[\frac{{30}}{9}\]
D. \[\frac{{20}}{9}\]
Trong tam giác ABC, kéo dài AM,BM,CM cắt các đoạn thẳng BC,CA,AB lần lượt tại H,G,F.
+) Trong mặt phẳng (HAD), kẻ MA′//AD.
+) Trong mặt phẳng (GBD), kẻ MB′//BD.
+) Trong mặt phẳng (FCD), kẻ MC′//CD.
Từ đó ta được các điểm A′,B′,C′ cần tìm.
Theo định lý Ta – let ta có: \[\frac{{MA'}}{{AD}} = \frac{{HM}}{{HA}} \Rightarrow MA' = 5.\frac{{MH}}{{AH}}\]
\[\frac{{MB'}}{{BD}} = \frac{{GM}}{{GB}} \Rightarrow MB' = 6.\frac{{MG}}{{BG}};\frac{{MC'}}{{CD}} = \frac{{FM}}{{FC}} \Rightarrow MC' = 4.\frac{{MF}}{{CF}}\]
\[ \Rightarrow MA'.MB'.MC' = 120.\frac{{MH}}{{AH}}.\frac{{MG}}{{BG}}.\frac{{MF}}{{CF}}\]
Trong tam giác ABC ta có:\[1 = \frac{{MH}}{{AH}} + \frac{{MG}}{{BG}} + \frac{{MF}}{{CF}} \ge 3\sqrt[3]{{\frac{{MH}}{{AH}}.\frac{{MG}}{{BG}}.\frac{{MF}}{{CF}}}}\]
\[ \Rightarrow \frac{{MH}}{{AH}}.\frac{{MG}}{{BG}}.\frac{{MF}}{{CF}} \le \frac{1}{{27}}\]
Do đó\[MA'.MB'.MC' = 120.\frac{{MH}}{{AH}}.\frac{{MG}}{{BG}}.\frac{{MF}}{{CF}} \le 120.\frac{1}{{27}} = \frac{{40}}{9}\]
\[ \Rightarrow {\left( {MA'.MB'.MC'} \right)_{\max }} = \frac{{40}}{9}\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247