A.MN và BC đồng phẳng
B.MN và BC song song với nhau
C.ABCD là hình thang và MN là đường trung bình của hình thang ABCDABCD
D.Đáp án khác
Ta có:
\(\left\{ {\begin{array}{*{20}{c}}{M \in (\alpha ) \cap (SAB)}\\{(\alpha )\parallel SA}\\{SA \subset (SAB)}\end{array}} \right. \Rightarrow (SAB) \cap (\alpha ) = MQ\parallel SA(Q \in SB)\)
Trong (ABCD), gọi \[I = MN \cap AC\] Ta có:
\[\begin{array}{*{20}{l}}{I \in MN,\,MN \subset \left( \alpha \right) \Rightarrow I \in \left( \alpha \right).}\\{I \in AC,\,AC \subset \left( {SAC} \right) \Rightarrow T \in \left( {SAC} \right)}\\{ \Rightarrow I \in \left( \alpha \right) \cap \left( {SAC} \right).}\end{array}\]
Vậy
\(\left\{ {\begin{array}{*{20}{c}}{I \in (\alpha ) \cap (SAC)}\\{(\alpha )\parallel SA}\\{SA \subset (SAC)}\end{array}} \right. \Rightarrow (SAC) \cap (\alpha ) = IP\parallel SA(P \in SC)\)
Thiết diện là tứ giác MNPQ .
Để tứ giác MNPQ là hình thang thì cần MQ//NP hoặc MN//PQ .
Trường hợp 1: Nếu MQ//NP thì
Ta có:\(\left\{ {\begin{array}{*{20}{c}}{MQ\parallel NP}\\{MQ\parallel SA}\end{array}} \right. \Rightarrow SA\parallel NP,\) mà \[NP \subset \left( {SCD} \right) \Rightarrow SA\parallel \left( {SCD} \right)\] (Vô lí).
Trường hợp 2: Nếu MN//PQ thì ta có các mặt phẳng (ABCD),(α),(SBC) đôi một cắt nhau theo ba giao tuyến là MN,BC,PQ nên MN//BC.
Đảo lại nếu MN//BC thì\(\left\{ {\begin{array}{*{20}{c}}{PQ = (\alpha ) \cap (SBC)}\\{MN \subset (\alpha )}\\{BC \subset (SBC)}\end{array}} \right. \Rightarrow PQ\parallel MN\parallel BC\) nên tứ giác MNPQ là hình thang.
Vậy tứ giác MNPQ là hình thang thì điều kiện là MN//BC .
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247