Cho hình chóp S.ABCD có đáy là hình thoi cạnh 3a, SA=SD=3a, SB=SC=

Câu hỏi :

Cho hình chóp S.ABCD có đáy là hình thoi cạnh 3a, SA=SD=3a, SB=SC=\(3a\sqrt 3 \). Gọi M, N lần lượt là trung điểm của các cạnh SA và SD, P là điểm thuộc cạnh AB sao cho AP=2a. Tính diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng (MNP).

A.\[\frac{{9{a^2}\sqrt {139} }}{4}\]

B. \[\frac{{9{a^2}\sqrt {139} }}{8}\]

C. \[\frac{{9{a^2}\sqrt 7 }}{8}\]

D. \[\frac{{9{a^2}\sqrt {139} }}{{16}}\]

* Đáp án

* Hướng dẫn giải

Cho hình chóp S.ABCD có đáy là hình thoi cạnh 3a, SA=SD=3a, SB=SC= (ảnh 1)

Do MN//AD⇒MN//BC. Vậy (MNP) cắt mặt phẳng (ABCD) theo giao tuyến đi qua P, song song BC và cắt DC tại điểm I. Thiết diện của khối chóp cắt bởi mặt phẳng (MNP) chính là hình thang MNIP.

Do \[\Delta NDI = \Delta MAP\;\] nên MP=NI. Từ đó suy ra MNIP là hình thang cân.

Trong tam giác SAB, ta có

\[\cos \widehat {SAB} = \frac{{S{A^2} + A{B^2} - S{B^2}}}{{2.SA.AB}} = \frac{{9{a^2} + 9{a^2} - 27{a^2}}}{{2.3a.3a}} = - \frac{{9{a^2}}}{{18{a^2}}} = - \frac{1}{2}\]

Trong tam giác MAP, ta có

\[M{P^2} = M{A^2} + A{P^2} - 2MA.AP.\cos \widehat {MAP} = \frac{{9{a^2}}}{4} + 4{a^2} + \frac{{3a}}{2} \cdot 2a = \frac{{37{a^2}}}{4} \Rightarrow MP = \frac{{a\sqrt {37} }}{2}\]

Từ M kẻ \[MF \bot PI\], từ N kẻ \[NE \bot PI\].

Dễ thấy, tứ giác MNEF là hình chữ nhật và từ đó suy ra

\[MN = EF = \frac{{3a}}{2} \Rightarrow PF = EI = \frac{{3a}}{4}\]

Xét tam giác vuông MFP, ta có

\[MF = \sqrt {M{P^2} - F{P^2}} = \sqrt {\frac{{37{a^2}}}{4} - \frac{{9{a^2}}}{{16}}} = \frac{{a\sqrt {139} }}{4}\]

Ta có

\[{S_{MNIP}} = \frac{{\left( {MN + IP} \right).MF}}{2} = \frac{{\left( {\frac{{3a}}{2} + 3a} \right) \cdot \frac{{a\sqrt {139} }}{4}}}{2} = \frac{{9{a^2}\sqrt {139} }}{{16}}\]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài toán thiết diện của hình chóp !!

Số câu hỏi: 30

Copyright © 2021 HOCTAP247