A.\[d = a\sqrt 3 .\]
B. \[d = \frac{{a\sqrt 3 }}{2}.\]
C. \[d = \frac{{a\sqrt 3 }}{3}.\]
D. \[d = \frac{{a\sqrt 6 }}{3}.\]
Ta có\(\left\{ {\begin{array}{*{20}{c}}{BC \bot AB}\\{BC \bot SA}\end{array}} \right. \Rightarrow BC \bot (SAB)\)
\[ \Rightarrow \widehat {SBA}\] là góc giữa 2 mặt phẳng (SBC) và (ABC)
Ta có \[SA = AB\tan \widehat {SBA} = a\sqrt 3 \]
Do AB||CD do đó\[d\left( {AB;CM} \right) = d\left( {AB;\left( {CMD} \right)} \right) = d\left( {A;\left( {SCD} \right)} \right)\]
Dựng\[AH \bot SD\,\,\,\left( 1 \right)\] ta có:
\(\left\{ {\begin{array}{*{20}{c}}{CD \bot AD}\\{CD \bot SA}\end{array}} \right. \Rightarrow CD \bot (SAD) \Rightarrow CD \bot AH(2)\)
Từ (1) và (2)\[ \Rightarrow AH \bot \left( {SCD} \right)\]
khi đó\[d\left( {A;\left( {SCD} \right)} \right) = AH\]
Lại có\[AH = \frac{{SA.AD}}{{\sqrt {S{A^2} + A{D^2}} }} = \frac{{a\sqrt 3 .a}}{{\sqrt {3{a^2} + {a^2}} }} = \frac{{a\sqrt 3 }}{2}.\]
Do đó\[d = \frac{{a\sqrt 3 }}{2}.\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247