A.\[\frac{{a\sqrt 2 }}{2}\]
B. \[\frac{{a\sqrt 2 }}{4}\]
C. \(a\)
D.\(a\sqrt 2 \)
Ta có :\(\left\{ {\begin{array}{*{20}{c}}{AM \bot BC}\\{AM \bot BB\prime }\end{array}} \right. \Rightarrow AM \bot (BCC\prime B\prime )\)
Trong \[\left( {BCC'B'} \right)\] kẻ\[MH//BC'\,\,\left( {H \in B'C} \right) \Rightarrow MH \bot B'C\]
\[MH \subset \left( {BCC'B'} \right) \Rightarrow AM \bot MH\]
\[ \Rightarrow MH\] là đoạn vuông góc chung giữa AM và B’C\[ \Rightarrow d\left( {AM;B'C} \right) = MH\]
Dễ thấy\[MH = \frac{1}{2}BK = \frac{1}{4}B'C = \frac{{a\sqrt 2 }}{4}\] với K là trung điểm của B′C.\[ \Rightarrow d\left( {AM;B'C} \right) = \frac{{a\sqrt 2 }}{4}\]
Đáp án cần chọn là: B
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247