A.\[d = \frac{{a\sqrt 6 }}{2}.\]
B. \[d = 2a\]
C. \[d = a\sqrt 2 .\]
D. \[d = \frac{{2a\sqrt {15} }}{5}.\]
\(\left\{ {\begin{array}{*{20}{c}}{(SAB) \bot (ABCD)}\\{(SAD) \bot (ABCD)}\\{(SAB) \cap (SAD) = SA}\end{array}} \right. \Rightarrow SA \bot (ABCD)\)
Xác định
\[{60^0} = \widehat {\left( {SC;\left( {ABCD} \right)} \right)}\]
\[ = \widehat {\left( {SC;AC} \right)} = \widehat {SCA}\]
và \[SA = AC.\tan \widehat {SCA} = \sqrt {A{D^2} + C{D^2}} .\tan {60^0} = a\sqrt 2 .\sqrt 3 = a\sqrt 6 .\]
Gọi M là trung điểm AB, suy ra ADCM là hình vuông nên CM=AD=a.
Xét tam giác ACB, ta có trung tuyến\[CM = a = \frac{1}{2}AB\] nên tam giác ACB vuông tại C.
Lấy điểm E sao cho ACBE là hình chữ nhật, suy ra \[AC\parallel BE\] và E nằm trong (ABCD).
Do đó \[d\left( {AC;SB} \right) = d\left( {AC;\left( {SBE} \right)} \right) = d\left( {A;\left( {SBE} \right)} \right)\]
Kẻ \[AK \bot SE\,\,\,\left( 1 \right)\] ta có:\(\left\{ {\begin{array}{*{20}{c}}{BE \bot AE}\\{BE \bot SA}\end{array}} \right. \Rightarrow BE \bot (SAE) \Rightarrow BE \bot AK(2)\)
Từ (1) và (2) \[ \Rightarrow AK \bot \left( {SBE} \right)\]
Khi đó \[d\left( {A,\left( {SBE} \right)} \right) = AK = \frac{{SA.AE}}{{\sqrt {S{A^2} + A{E^2}} }}.\]
Ta có:\[AE = BC = \sqrt {{a^2} + {a^2}} = a\sqrt 2 \Rightarrow AK = \frac{{a\sqrt 6 .a\sqrt 2 }}{{\sqrt {6{a^2} + 2{a^2}} }} = \frac{{a\sqrt 6 }}{2}\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247