A.\[\frac{a}{3}.\]
B. \[\frac{{2a}}{3}.\]
C. \[2a\]
D. \[\frac{a}{2}.\]
Gọi\[E = HK \cap AC.\] Do \[HK\parallel BD\] nên suy ra\[d\left( {HK;SD} \right) = d\left( {HK;\left( {SBD} \right)} \right) = d\left( {E;\left( {SBD} \right)} \right) = \frac{1}{2}d\left( {A;\left( {SBD} \right)} \right)\]
(vì \[OE = \frac{1}{2}AO\])
Kẻ \[AF \bot SO\,\,\left( 1 \right)\] ta có:
\(\left\{ {\begin{array}{*{20}{c}}{BD \bot AC}\\{BD \bot SA}\end{array}} \right. \Rightarrow BD \bot (SAC) \Rightarrow BD \bot AF(2)\)
Từ (1) và (2) \[ \Rightarrow AF \bot \left( {SBD} \right)\] khi đó\[d\left( {A;\left( {SBD} \right)} \right) = AF = \frac{{SA.AO}}{{\sqrt {S{A^2} + A{O^2}} }} = \frac{{2a.\frac{{a\sqrt 2 }}{2}}}{{\sqrt {4{a^2} + \frac{{{a^2}}}{2}} }} = \frac{{2a}}{3}.\]
Vậy khoảng cách\[d\left( {HK;SD} \right) = \frac{1}{2}AF = \frac{a}{3}.\]
Đáp án cần chọn là: A
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247