Tìm \[m\] để phương trình sau có nghiệm: \[\sqrt {3 + x} + \sqrt {6 - x} - \sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} = m\].
D. \(3\sqrt 2 - \frac{9}{2} \le m \le 3\)
D
Đáp án D
Phương pháp giải:
- Đặt \(t = \sqrt {3 + x} + \sqrt {6 - x} \), tìm điều kiện của \(t\).
- Bình phương hai vế, biểu diễn \(\sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} \) theo \(t\).
- Đưa phương trình đã cho về dạng phương trình bậc hai ẩn \(t\), tìm nghiệm \(t\) theo \(m\).
- Giải các bất phương trình \(t\) thỏa mãn điều kiện xác định ở trên.
Giải chi tiết:
ĐKXĐ: \( - 3 \le x \le 6\)
Đặt \(t = \sqrt {3 + x} + \sqrt {6 - x} \)
\( \Rightarrow {t^2} = 3 + x + 6 - x + 2\sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} \)
\( \Rightarrow {t^2} = 9 + 2\sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} \)
\( \Rightarrow \sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} = \frac{{{t^2} - 9}}{2}\)
Do \(\sqrt {\left( {3 + x} \right)\left( {6 - x} \right)} \ge 0 \Leftrightarrow \frac{{{t^2} - 9}}{2} \ge 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{t \ge 3}\\{t \le - 3}\end{array}} \right. \Leftrightarrow t \ge 3\) (do \[t \ge 0\]).
Lại có \[\left( {3 + x} \right)\left( {6 - x} \right) = - {x^2} + 3x + 18 \le \frac{{81}}{4}{\mkern 1mu} {\mkern 1mu} \forall x\] nên \[\frac{{{t^2} - 9}}{2} \le \frac{9}{2} \Leftrightarrow t \le 3\sqrt 2 \]\[ \Rightarrow 3 \le t \le 3\sqrt 2 \].
Khi đó phương trình trở thành \(t - \frac{{{t^2} - 9}}{2} = m \Leftrightarrow {t^2} - 2t + 2m - 9 = 0{\mkern 1mu} {\mkern 1mu} \left( * \right)\)
Để phương trình ban đầu có nghiệm thì phương trình (*) phải có nghiệm thỏa mãn (1).
Ta có \(\Delta ' = 1 - 2m + 9 = 10 - 2m \ge 0 \Leftrightarrow m \le 5\)
Khi đó phương trình (*) có nghiệm \(\left[ {\begin{array}{*{20}{l}}{{t_1} = 1 + \sqrt {10 - 2m} }\\{{t_2} = 1 - \sqrt {10 - 2m} }\end{array}} \right.\).
\( \Rightarrow \left[ {\begin{array}{*{20}{l}}{3 \le 1 + \sqrt {10 - 2m} \le 3\sqrt 2 }\\{3 \le 1 - \sqrt {10 - 2m} \le 3\sqrt 2 }\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{2 \le \sqrt {10 - 2m} \le 3\sqrt 2 - 1}\\{1 - 3\sqrt 2 \le \sqrt {10 - 2m} \le - 2{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {VN} \right)}\end{array}} \right.\)
\( \Leftrightarrow 4 \le 10 - 2m \le 19 - 6\sqrt 2 \)
\( \Leftrightarrow 6\sqrt 2 - 9 \le 2m \le 6\)
\( \Leftrightarrow 3\sqrt 2 - \frac{9}{2} \le m \le 3\)
Kết hợp điều kiện ta có \(3\sqrt 2 - \frac{9}{2} \le m \le 3\).Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247