Một nhóm học sinh có 8 học sinh nữ và 4 học sinh nam. Xếp ngẫu nhiên nhóm

Câu hỏi :

Một nhóm học sinh có 8 học sinh nữ và 4 học sinh nam. Xếp ngẫu nhiên nhóm học sinh này thành một hàng dọc. Tính xác suất sao cho không có hai bạn nam nào đứng cạnh nhau.

A. \(\frac{{162}}{{165}}\)

B. \(\frac{{163}}{{165}}\)

C. \(\frac{{14}}{{55}}\)


D. \(\frac{{16}}{{55}}\)


* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp giải:

Sử dụng nguyên tắc vách ngăn.

Giải chi tiết:

Số cách xếp 12 học sinh thành 1 hàng dọc là \(12!\) cách \( \Rightarrow \) Không gian mẫu \(n\left( \Omega \right) = 12!\)

Gọi A là biến cố: “không có hai bạn nam nào đứng cạnh nhau”

Xếp 8 bạn nữ thành hàng ngang có \(8!\) cách, khi đó có 9 vách ngăn giữa 8 bạn nữ này.

Xếp 4 bạn nam vào 4 trong 9 vách ngăn trên có \(A_9^4\) cách.

Khi đó \(n\left( A \right) = 8!.A_9^4\).

Vậy xác suất cần tìm là \(P\left( A \right) = \frac{{8!.A_9^4}}{{12!}} = \frac{{14}}{{55}}\).

Copyright © 2021 HOCTAP247