Cho hàm số \(f\left( x \right)\) có \(f'\left( x \right) = {x^{2021}}{\left( {x - 1} \right)^{2020}}\left( {x + 1} \right);\forall x \in \mathbb{R}\). Hàm số đã cho có bao nhiêu điểm cực trị?
Đáp án: 2
Phương pháp giải:
Tìm nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0\).
Giải chi tiết:
Ta có \(f'\left( x \right) = 0\)
\( \Leftrightarrow {x^{2021}}{\left( {x - 1} \right)^{2020}}\left( {x + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = 0{\mkern 1mu} {\mkern 1mu} \left( {nghiem{\mkern 1mu} {\mkern 1mu} boi{\mkern 1mu} {\mkern 1mu} le} \right)}\\{x = 1{\mkern 1mu} {\mkern 1mu} \left( {nghiem{\mkern 1mu} {\mkern 1mu} boi{\mkern 1mu} {\mkern 1mu} chan} \right)}\\{x = - 1{\mkern 1mu} {\mkern 1mu} \left( {nghiem{\mkern 1mu} {\mkern 1mu} boi{\mkern 1mu} {\mkern 1mu} le} \right)}\end{array}} \right.\)
Vậy hàm số \(f\left( x \right)\) có 2 điểm cực trị \(x = 0,{\mkern 1mu} {\mkern 1mu} x = - 1\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247