Cho tích phân I = tích phân từ 0 đến pi/4 e^x sin x . Gọi a,ba,b là các số nguyên thỏa mãn I = e^π/2 + a/b

Câu hỏi :

Cho tích phân \[I = \mathop \smallint \limits_0^{\frac{\pi }{2}} {e^x}\sin x\]. Gọi a,ba,b là các số nguyên thỏa mãn \[I = \frac{{{e^{\frac{\pi }{2}}} + a}}{b}\]

A.\[a - b = - 1\]

B. \[a + b = 1\]

C. \[a + b = 2\]

D. \[a - b = 0\]

* Đáp án

* Hướng dẫn giải

Chọn kết luận đúng:

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = {e^x}}\\{dv = sinxdx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = {e^x}dx}\\{v = - cosx}\end{array}} \right.\)

\(I = \int\limits_0^{\frac{\pi }{2}} {{e^x}sinxdx = - {e^x}cosx} \left| {_0^{\frac{\pi }{2}}} \right. + \int\limits_0^{\frac{\pi }{2}} {{e^x}cosxdx = 1 + } \int\limits_0^{\frac{\pi }{2}} {{e^x}cosxdx} \)

Đặt\({\left\{ {\begin{array}{*{20}{c}}{u = {e^x}}\\{dv = cosxdx}\end{array}} \right.^{}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = {e^x}dx}\\{v = sinxdx}\end{array}} \right.\)

Khi đó

\(\int\limits_0^{\frac{\pi }{2}} {{e^x}cosxdx = {e^x}sinx} \left| {_0^{\frac{\pi }{2}}} \right. - \int\limits_0^{\frac{\pi }{2}} {{e^x}sinxdx = {e^{\frac{\pi }{2}}} - } \int\limits_0^{\frac{\pi }{2}} {{e^x}sinxdx = {e^{\frac{\pi }{2}}} - I} \)

Do đó

\(I = = 1 + {e^{\frac{\pi }{2}}} - I \Leftrightarrow 2I = {e^{\frac{\pi }{2}}} + 1 \Leftrightarrow I = \frac{{{e^{\frac{\pi }{2}}} + 1}}{2}\)

\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = 2}\end{array}} \right.\)

Quan sát các đáp án ta thấy đáp án A thỏa mãn.

Đáp án cần chọn là: A

Copyright © 2021 HOCTAP247