A.8
B.10
C.4
D.\(\sqrt {10} \)
Giả sử\[{z_1} = {x_1} + {y_1}i,{z_2} = {x_2} + {y_2}i\]
Theo giả thiết\[|{z_1} - {z_2}| = 1\] có
\[{({x_1} - {x_2})^2} + {({y_1} - {y_2})^2} = 1 \Leftrightarrow x_1^2 + x_2^2 - 2{x_1}{x_2} + y_1^2 + y_2^2 - 2{y_1}{y_2} = 1\](1)
Theo giả thiết\[|{z_1} + {z_2}| = 3\] có
\[{({x_1} + {x_2})^2} + {({y_1} + {y_2})^2} = 9 \Leftrightarrow x_1^2 + x_2^2 + 2{x_1}{x_2} + y_1^2 + y_2^2 + 2{y_1}{y_2} = 9\](2)
Cộng vế với vế của (1) và (2) ta có
\[x_1^2 + x_2^2 + y_1^2 + y_2^2 = 5\]
Ta có
\[T = \sqrt {x_1^2 + y_1^2} + \sqrt {x_2^2 + y_2^2} \]
Theo bất đẳng thức Bunhiacopxki ta có
\[T \le \sqrt {2.(x_1^2 + x_2^2 + y_1^2 + y_2^2)} = \sqrt {10} \]
Đáp án cần chọn là: D
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247