Cho z 1 , z 2 thỏa mãn | z 1 − z 2 | = 1 và | z 1 + z 2 | = 3 . Tính m a x T = | z 1 | + | z 2 |

Câu hỏi :

Cho \[{z_1},{z_2}\;\] thỏa mãn \[\left| {{z_1} - {z_2}} \right| = 1\;\]và \[\left| {{z_1} + {z_2}} \right| = 3\]. Tính \[maxT = \left| {{z_1}} \right| + \left| {{z_2}} \right|\;\]

A.8     

B.10

C.4     

D.\(\sqrt {10} \)

* Đáp án

* Hướng dẫn giải

Giả sử\[{z_1} = {x_1} + {y_1}i,{z_2} = {x_2} + {y_2}i\]

Theo giả thiết\[|{z_1} - {z_2}| = 1\] có

\[{({x_1} - {x_2})^2} + {({y_1} - {y_2})^2} = 1 \Leftrightarrow x_1^2 + x_2^2 - 2{x_1}{x_2} + y_1^2 + y_2^2 - 2{y_1}{y_2} = 1\](1)

Theo giả thiết\[|{z_1} + {z_2}| = 3\] có

\[{({x_1} + {x_2})^2} + {({y_1} + {y_2})^2} = 9 \Leftrightarrow x_1^2 + x_2^2 + 2{x_1}{x_2} + y_1^2 + y_2^2 + 2{y_1}{y_2} = 9\](2)

Cộng vế với vế của (1) và (2) ta có

\[x_1^2 + x_2^2 + y_1^2 + y_2^2 = 5\]

Ta có

\[T = \sqrt {x_1^2 + y_1^2} + \sqrt {x_2^2 + y_2^2} \]

Theo bất đẳng thức Bunhiacopxki ta có

\[T \le \sqrt {2.(x_1^2 + x_2^2 + y_1^2 + y_2^2)} = \sqrt {10} \]

Đáp án cần chọn là: D

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài toán tìm số phức thỏa mãn điều kiện cho trước !!

Số câu hỏi: 15

Copyright © 2021 HOCTAP247