Câu hỏi :

Tìm giá trị nhỏ nhất của \[\left| z \right|,\]biết rằng z thỏa mãn điều kiện \[\left| {\frac{{4 + 2i}}{{1 - i}}z - 1} \right| = 1.\]

A.\(\sqrt 2 \)       

B.0

C.−1

D.\(\sqrt 3 \)

* Đáp án

* Hướng dẫn giải

Có\[\frac{{4 + 2i}}{{1 - i}} = 1 + 3i\]. Đặt\[z = x + yi\]thì

\[\frac{{4 + 2i}}{{1 - i}}z - 1 = (1 + 3i)(x + yi) - 1 = (x - 3y - 1) + (3x + y)i\]

Điều kiện đã cho trong bài được viết lại thành

\[{(x - 3y - 1)^2} + {(3x + y)^2} = 1\]

\[ \Leftrightarrow {(x - 3y)^2} - 2(x - 3y) + 1 + {(3x + y)^2} = 1\]

\[ \Leftrightarrow 10{x^2} + 10{y^2} - 2x + 6y = 0\]

\[ \Leftrightarrow \left( {{x^2} - \frac{1}{5}x} \right) + \left( {{y^2} + \frac{3}{5}y} \right) = 0\]

\[ \Leftrightarrow {\left( {x - \frac{1}{{10}}} \right)^2} + {\left( {y + \frac{3}{{10}}} \right)^2} = \frac{1}{{10}}\]

Điểm biểu diễn M(x,y) của z chạy trên đường tròn (*). Cần tìm điểm M(x,y) thuộc đường tròn này để OM nhỏ nhất.

Vì đường tròn này qua O nên min OM=0 khi \[M \equiv O\] hay M(0,0), do đó z=0 hay \[min\left| z \right| = 0\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Bài toán tìm số phức thỏa mãn điều kiện cho trước !!

Số câu hỏi: 15

Copyright © 2021 HOCTAP247