Trang chủ Đề thi & kiểm tra Khác Phương trình đường thẳng !! Trong không gian với hệ tọa độ Oxyz, cho đường...

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng

Câu hỏi :

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{c}}{x = 2 + \left( {{m^2} - 2m} \right)t}\\{y = 5 - \left( {m - 4} \right)t}\\{z = 7 - 2\sqrt 2 }\end{array}} \right.\)

A.\[\frac{5}{6}\]

B. \[\frac{5}{3}\]

C. \[\frac{7}{3}\]

D. \[\frac{3}{5}\]

* Đáp án

* Hướng dẫn giải

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng  (ảnh 1)

Đường thẳng \[\Delta \] đi qua điểm\[M\left( {2;5;7 - 2\sqrt 2 } \right)\] và nhận\[\vec u = \left( {{m^2} - 2m;4 - m;0} \right)\] làm VTCP.

Có\[\overrightarrow {AM} = \left( {1;3;4 - 2\sqrt 2 } \right) \Rightarrow AM = \sqrt {34 - 16\sqrt 2 } \]

Để\[d\left( {A,{\rm{\Delta }}} \right) = A{H_{\min }}\]  thì\[\sin \alpha = \frac{{AH}}{{AM}}\] đạt GTNN hay cosα đạt GTLN.

\[\cos \alpha = \cos \left( {AM,{\rm{\Delta }}} \right) = \frac{{\left| {\overrightarrow {AM} .\vec u} \right|}}{{\left| {\overrightarrow {AM} } \right|.\left| {\vec u} \right|}} = \frac{{\left| {\left( {{m^2} - 2m} \right) + 3\left( {4 - m} \right)} \right|}}{{\sqrt {34 - 16\sqrt 2 } .\sqrt {{{\left( {{m^2} - 2m} \right)}^2} + {{\left( {4 - m} \right)}^2}} }}\]

\[\left| {\left( {{m^2} - 2m} \right) + 3\left( {4 - m} \right)} \right| \le \sqrt {{1^2} + {3^2}} .\sqrt {{{\left( {{m^2} - 2m} \right)}^2} + {{\left( {4 - m} \right)}^2}} \]

\[ \Rightarrow \frac{{\left| {\left( {{m^2} - 2m} \right) + 3\left( {4 - m} \right)} \right|}}{{\sqrt {34 - 16\sqrt 2 } .\sqrt {{{\left( {{m^2} - 2m} \right)}^2} + {{\left( {4 - m} \right)}^2}} }} \le \frac{{\sqrt {10} }}{{\sqrt {34 - 16\sqrt 2 } }}\]

\[ \Rightarrow \cos \alpha \] đạt GTLN nếu

\[\frac{{{m^2} - 2m}}{1} = \frac{{4 - m}}{3} \Leftrightarrow 3{m^2} - 6m = 4 - m \Leftrightarrow 3{m^2} - 5m - 4 = 0\]

Phương trình này có hai nghiệm phân biệt do ac<0 nên tổng các giá trị của m là \(\frac{5}{3}\) .

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Phương trình đường thẳng !!

Số câu hỏi: 40

Copyright © 2021 HOCTAP247