Khoảng cách giữa hai đường thẳng

Câu hỏi :

Khoảng cách giữa hai đường thẳng \({d_1}:\left\{ {\begin{array}{*{20}{c}}{x = 2 + 2t}\\{y = - 1 + t}\\{z = 1}\end{array}} \right.,{d_2}:\left\{ {\begin{array}{*{20}{c}}{x = 1}\\{y = 1 + t}\\{z = 3 - t}\end{array}} \right.\) là:

A.9

B.3

C.\(\frac{1}{3}\)

D.1 

* Đáp án

* Hướng dẫn giải

Đường thẳng d1 đi qua\[{M_1}\left( {2; - 1;1} \right)\] và có VTCP\[\overrightarrow {{u_1}} = \left( {2;1;0} \right)\]

Đường thẳng d2 đi qua\[{M_2}\left( {1;1;3} \right)\] và có VTCP\[\overrightarrow {{u_2}} = \left( {0;1; - 1} \right)\]

Suy ra

\[\overrightarrow {{M_1}{M_2}} = \left( { - 1;2;2} \right);\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}1\\1\end{array}}&{\begin{array}{*{20}{l}}0\\{ - 1}\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}0\\{ - 1}\end{array}}&{\begin{array}{*{20}{l}}2\\0\end{array}}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\begin{array}{*{20}{l}}2\\0\end{array}}&{\begin{array}{*{20}{l}}1\\1\end{array}}\end{array}} \right|} \right) = \left( { - 1;2;2} \right)\]

Vậy

\[d\left( {{d_1},{d_2}} \right) = \frac{{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right].\overrightarrow {{M_1}{M_2}} } \right|}}{{\left| {\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right]} \right|}} = \frac{{\left| {\left( { - 1} \right).\left( { - 1} \right) + 2.2 + 2.2} \right|}}{{\sqrt {{1^2} + {2^2} + {2^2}} }} = 3\]

Đáp án cần chọn là: B

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Các bài toán về mối quan hệ giữa hai đường thẳng !!

Số câu hỏi: 21

Copyright © 2021 HOCTAP247