Cho hàm số \(y = \frac{{mx - 18}}{{x - 2m}}\). Gọi \(S\) là tập hợp các giá trị nguyên của tham số \(m\)để hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\). Tổng các phần tử của \(S\) bằng:
A. -2
B. -3
C. 2
D. -5
A
Đáp án A
Phương pháp giải:
- Tìm TXĐ \(D = \mathbb{R}\backslash \left\{ {{x_0}} \right\}\)
- Để hàm số đồng biến trên \(\left( {a;b} \right)\) thì \(y' > 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {a;b} \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{y' > 0}\\{{x_0} \notin \left( {a;b} \right)}\end{array}} \right.\).
Giải chi tiết:
TXĐ: \(D = \mathbb{R}\backslash \left\{ {2m} \right\}\)
Ta có: \(y = \frac{{mx - 18}}{{x - 2m}} \Rightarrow y' = \frac{{ - 2{m^2} + 18}}{{{{\left( {x - 2m} \right)}^2}}}\)
Để hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right)\) thì \(y' > 0{\mkern 1mu} {\mkern 1mu} \forall x \in \left( {2; + \infty } \right)\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{18 - 2{m^2} > 0}\\{2m \notin \left( {2; + \infty } \right)}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 3 < m < 3}\\{2m \le 2}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ - 3 < m < 3}\\{m \le 1}\end{array}} \right. \Leftrightarrow - 3 < m \le 1\)
Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 2; - 1;0;1} \right\} = S\).
Vậy tổng các phần tử của \(S\) bằng: \( - 2 - 1 + 0 + 1 = - 2\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247