Cho tứ diện ABCD có AC = a, BD = 3a. Gọi M và N lần lượt là trung điểm

Câu hỏi :

Cho tứ diện \(ABCD\)\(AC = a,{\mkern 1mu} {\mkern 1mu} BD = 3a\). Gọi \(M\)\(N\) lần lượt là trung điểm của \(AD\)\(BC.\) Biết \(AC\) vuông góc với \(BD\). Tính độ dài đoạn thẳng \(MN\) theo \(a\).

A. \(MN = \frac{{3a\sqrt 2 }}{2}.\)

B. \(MN = \frac{{a\sqrt 6 }}{3}.\)

C. \(MN = \frac{{a\sqrt {10} }}{2}.\)


D. \(MN = \frac{{2a\sqrt 3 }}{3}.\)


* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp giải:

- Gọi \(P\) là trung điểm của \(AB\). Tính \(PM,{\mkern 1mu} {\mkern 1mu} PN\).

- Chứng minh \(\Delta PMN\) vuông, áp dụng định lí Pytago tính \[MN\].

Giải chi tiết:
Cho tứ diện ABCD có AC = a, BD = 3a. Gọi M và N lần lượt là trung điểm (ảnh 1)

Gọi \[P\] là trung điểm của \[AB\].

Ta có: \[PM,{\mkern 1mu} {\mkern 1mu} PN\] lần lượt là đường trung bình của \[\Delta ACD,{\mkern 1mu} {\mkern 1mu} \Delta ABC\] nên \[PM = \frac{1}{2}BD = \frac{{3a}}{2}\], \[PN = \frac{1}{2}AC = \frac{a}{2}\]\[\left\{ {\begin{array}{*{20}{l}}{PM\parallel BD}\\{PN\parallel AC}\end{array}} \right.\].

\[AC \bot BD{\mkern 1mu} {\mkern 1mu} \left( {gt} \right)\] nên \[PM \bot PN\], do đó tam giác \[PMN\] vuông tại \[P\].

Áp dụng định lí Pytago ta có: \[MN = \sqrt {P{M^2} + P{N^2}} \]\[ = \sqrt {\frac{{9{a^2}}}{4} + \frac{{{a^2}}}{4}} = \frac{{a\sqrt {10} }}{2}\].

Copyright © 2021 HOCTAP247