Cho hàm số y = f(x) liên tục trên tập số thực thỏa mãn f(x) + (5x - 2) f(5x^2 - 4x)

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) liên tục trên tập số thực thỏa mãn \(f\left( x \right) + \left( {5x - 2} \right)f\left( {5{x^2} - 4x} \right)\) \( = 50{x^3} - 60{x^2} + 23x - 1\) \(\forall x \in \mathbb{R}\). Giá trị của biểu thức \(\int\limits_0^1 {f\left( x \right)dx} \) bằng:

A. 2

B. 1

C. 3

D. 6

* Đáp án

A

* Hướng dẫn giải

Đáp án A

Phương pháp giải:

- Lấy tích phân từ 0 đến 1 hai vế.

- Sử dụng phương pháp đổi biến số.

- Sử dụng tính chất tích phân: \(\int\limits_a^b {f\left( x \right)dx} = \int\limits_a^b {f\left( t \right)dt} \).

Giải chi tiết:

Lấy tích phân từ 0 đến 1 hai vế ta được:

\(\int\limits_0^1 {f\left( x \right)dx} + \int\limits_0^1 {\left( {5x - 2} \right)f\left( {5{x^2} - 4x} \right)dx} = \int\limits_0^1 {\left( {50{x^3} - 60{x^2} + 23x - 1} \right)dx} \)

Xét tích phân \(I = \int\limits_0^1 {\left( {5x - 2} \right)f\left( {5{x^2} - 4x} \right)dx} \).

Đặt \(t = 5{x^2} - 4x\) ta có: \(dt = \left( {10x - 4} \right)dx \Leftrightarrow \left( {5x - 2} \right)dx = \frac{1}{2}dt\)

Đổi cận: \(\left\{ {\begin{array}{*{20}{l}}{x = 0 \Rightarrow t = 0}\\{x = 1 \Rightarrow t = 1}\end{array}} \right.\)

\( \Rightarrow I = \int\limits_0^1 {\frac{1}{2}f\left( t \right)dt} = \frac{1}{2}\int\limits_0^1 {f\left( x \right)dx} \)

Xét tích phân \(J = \int\limits_0^1 {\left( {50{x^3} - 60{x^2} + 23x - 1} \right)dx} \) ta có:

\(J = \left. {\left( {\frac{{50{x^4}}}{4} - \frac{{60{x^3}}}{3} + \frac{{23{x^2}}}{2} - x} \right)} \right|_0^1 = 3\)

Khi đó ta có \(\int\limits_0^1 {f\left( x \right)dx} + \frac{1}{2}\int\limits_0^1 {f\left( x \right)dx} = 3\)

\( \Leftrightarrow \frac{3}{2}\int\limits_0^1 {f\left( x \right)dx} = 3\)

\( \Leftrightarrow \int\limits_0^1 {f\left( x \right)dx} = 2\).

Copyright © 2021 HOCTAP247