Trong mặt phẳng phức, cho số phức z có điểm biểu diễn là N. Biết

Câu hỏi :

Trong mặt phẳng phức, cho số phức \(z\) có điểm biểu diễn là \(N.\) Biết rằng số phức \(w = \frac{1}{z}\) được biểu diễn bởi một trong bốn điểm \(M,P,Q,R\) như hình vẽ bên. Hỏi điểm biểu diễn của \(w\) là điểm nào?

A. \(P\)

B. \(Q\)

C. \(R\)


D. \(M\)


* Đáp án

D

* Hướng dẫn giải

Đáp án D

Phương pháp giải:

Tính \(\frac{1}{z}\) để tìm được tọa độ điểm biểu diễn số phức \(\frac{1}{z}\).

Đánh giá hoành độ và tung độ để xác định xem điểm cần tìm thuộc góc phần tư nào, từ đó chọn đáp án.

Giải chi tiết:

Gọi số phức \(z = a + bi{\mkern 1mu} {\mkern 1mu} \left( {a;b \in \mathbb{R}} \right)\) thì điểm \(N\left( {a;b} \right)\)

Khi đó số phức: \(\frac{1}{z} = \frac{1}{{a + bi}} = \frac{{a - bi}}{{\left( {a + bi} \right)\left( {a - bi} \right)}} = \frac{{a - bi}}{{{a^2} + {b^2}}} = \frac{a}{{{a^2} + {b^2}}} - \frac{b}{{{a^2} + {b^2}}}.i\)

Nên điểm biểu diễn số phức \(\frac{1}{z}\) có tọa độ \(\left( {\frac{a}{{{a^2} + {b^2}}}; - \frac{b}{{{a^2} + {b^2}}}} \right)\).

Vì điểm \(N\left( {a;b} \right)\) thuộc góc phần tư thứ (IV) tức là \(a > 0;b < 0\).

Suy ra \(\frac{a}{{{a^2} + {b^2}}} > 0;{\mkern 1mu} - \frac{b}{{{a^2} + {b^2}}} > 0\) nên điểm biểu diễn số phức \(\frac{1}{z}\) thuộc góc phần tư thứ (I). Từ hình vẽ chỉ có điểm \(M\) thỏa mãn.

Copyright © 2021 HOCTAP247