Cho phương trình đường tròn: x^2 + y^2 - 8x + 10y + m = 0

Câu hỏi :

Cho phương trình đường tròn: \({x^2} + {y^2} - 8x + 10y + m = 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( * \right)\)

Điều kiện của \(m\) để (*) là phương trình đường tròn có bán kính bằng 7 là:

A. \(m = 4\)

B. \(m = 8\)

C. \(m = - 8\)        


D. \(m = - 4\)


* Đáp án

C

* Hướng dẫn giải

Đáp án C

Phương pháp giải:

Phương trình \(\left( C \right):{\mkern 1mu} {\mkern 1mu} {x^2} + {y^2} - 2ax - 2by + c = 0\) có bán kính là \(R = \sqrt {{a^2} + {b^2} - c} .\)

Giải chi tiết:

Xét phương trình đường tròn: \({x^2} + {y^2} - 8x + 10y + m = 0 \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = 4}\\{b = - 5}\\{c = m}\end{array}} \right.\)

Ta có: \({a^2} + {b^2} - c = {R^2}\)\( \Rightarrow {4^2} + {\left( { - 5} \right)^2} - m = {7^2} \Leftrightarrow m = - 8\).

Copyright © 2021 HOCTAP247