Cho khối lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy là 2a

Câu hỏi :

Cho khối lăng trụ tam giác đều \[ABC.A'B'C'\] có cạnh đáy là \[2a\] và khoảng cách từ điểm \[A\] đến mặt phẳng \[\left( {A'BC} \right)\] bằng \[a\]. Tính thể tích của khối lăng trụ \[ABC.A'B'C'\]

A. \[\frac{{\sqrt 2 {a^3}}}{3}\]

B. \[\frac{{{a^3}\sqrt 2 }}{2}\] 

C. \[2\sqrt 2 {a^3}\]


D. \[\frac{{3{a^3}\sqrt 2 }}{2}\]


* Đáp án

D

* Hướng dẫn giải

Đáp án D

Phương pháp giải:

- Xác định góc từ điểm \[A\] đến \(\left( {A'BC} \right)\)

- Sử dụng hệ thức lượng trong tam giác vuông tính \(A'A\)

- Tính thể tích \({V_{ABC.A'B'C'}} = A'A.{S_{\Delta ABC}}\)

Giải chi tiết:

Cho khối lăng trụ tam giác đều ABC.A'B'C' có cạnh đáy là 2a  (ảnh 1)

Gọi \(M\) là trung điểm của \[BC\] ta có \[\left\{ {\begin{array}{*{20}{l}}{BC \bot AM}\\{BC \bot AA'}\end{array}} \right. \Rightarrow BC \bot \left( {A'BC} \right)\]

Trong \[\left( {A'BC} \right)\] kẻ \[AH \bot A'M{\mkern 1mu} {\mkern 1mu} \left( {H \in A'M} \right)\] ta có: \[\left\{ {\begin{array}{*{20}{l}}{AH \bot BC}\\{AH \bot A'M}\end{array}} \right. \Rightarrow AH \bot \left( {A'BC} \right)\]

\[ \Rightarrow d\left( {A;\left( {A'BC} \right)} \right) = AH = a\]

Vì tam giác \(ABC\) đều cạnh \(2a\) nên \(AM = 2a.\frac{{\sqrt 3 }}{2} = a\sqrt 3 \) \({S_{\Delta ABC}} = {\left( {2a} \right)^2}\frac{{\sqrt 3 }}{4} = {a^2}\sqrt 3 \)

Áp dụng hệ thức lượng trong tam giác vuông \(AA'M\) ta có:

\(\frac{1}{{A{H^2}}} = \frac{1}{{A'{A^2}}} + \frac{1}{{A{M^2}}} \Rightarrow \frac{1}{{{a^2}}} = \frac{1}{{A'{A^2}}} + \frac{1}{{3{a^2}}}\)

\( \Rightarrow \frac{1}{{A'{A^2}}} = \frac{2}{{3{a^2}}} \Rightarrow A'A = \frac{{a\sqrt 6 }}{2}\)

Vậy \({V_{ABC.A'B'C'}} = A'A.{S_{\Delta ABC}} = \frac{{a\sqrt 6 }}{2}.{a^2}\sqrt 3 = \frac{{3{a^3}\sqrt 2 }}{2}\).

Copyright © 2021 HOCTAP247