Cho hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {1;3} \right]\), thỏa mãn \(f\left( {4 - x} \right) = f\left( x \right),\forall x \in \left[ {1;3} \right]\) và \(\int\limits_1^3 {xf\left( x \right)dx = - 2} \). Giá trị \(2\int\limits_1^3 {f\left( x \right)dx} \) bằng
D. 2
Phương pháp giải:
- Sử dụng biến đổi: \(\int\limits_1^3 {\left( {4 - x} \right)f\left( x \right)dx} = 4\int\limits_1^3 {f\left( x \right)dx} - \int\limits_1^3 {xf\left( x \right)dx} \)
- Xét tích phân \(\int\limits_1^3 {\left( {4 - x} \right)f\left( x \right)dx} \), tính tích phân bằng phương pháp đổi biến, đặt \(t = 4 - x\)
- Áp dụng tính chât của nguyên hàm: \(\int {f\left( x \right)dx = \int {f\left( t \right)dt} } \)
Giải chi tiết:
Ta có: \(\int\limits_1^3 {\left( {4 - x} \right)f\left( x \right)dx} = 4\int\limits_1^3 {f\left( x \right)dx} - \int\limits_1^3 {xf\left( x \right)dx} \)
Đặt \(t = 4 - x \Rightarrow dt = - dx\)
Đổi cận: \(\left\{ {\begin{array}{*{20}{l}}{x = 1 \Rightarrow t = 3}\\{x = 3 \Rightarrow t = 1}\end{array}} \right.\), khi đó ta có:
\(\int\limits_1^3 {\left( {4 - x} \right)f\left( x \right)dx} = - \int\limits_3^1 {tf\left( {4 - t} \right)dt} \)
\( = \int\limits_1^3 {tf\left( {4 - t} \right)dt} = \int\limits_1^3 {tf\left( t \right)dt} \)
\( = \int\limits_1^3 {xf\left( x \right)dx} \) \( \Rightarrow \int\limits_1^3 {xf\left( x \right)dx} = 4\int\limits_1^3 {f\left( x \right)dx} - \int\limits_1^3 {xf\left( x \right)dx} \)
\( \Leftrightarrow 2\int\limits_1^3 {f\left( x \right)dx} = \int\limits_1^3 {xf\left( x \right)dx} = \left( { - 2} \right)\).
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247