Cho khối tứ diện ABCD. Gọi M,N,E lần lượt là trung điểm của

Câu hỏi :

Cho khối tứ diện \(ABCD\). Gọi \(M,N,E\) lần lượt là trung điểm của \(AB,BD,DA\). Tỉ số thể tích của hai khối tứ diện \(MNEC\)\(ABCD\) bằng

A. \(\frac{1}{8}\)

B. \(\frac{1}{4}\)

C. \(\frac{1}{3}\)


D. \(\frac{1}{2}\)


* Đáp án

B

* Hướng dẫn giải

Đáp án B

Phương pháp giải:

- Tính thể tích khối tứ diện \(MNEC\)\(ABCD\)

- So sánh diện tích đáy và chiều cao mỗi khối tứ diện và suy ra tỉ số.

Giải chi tiết:

Cho khối tứ diện ABCD. Gọi M,N,E lần lượt là trung điểm của  (ảnh 1)

Ta có: \({V_{ABCD}} = {V_{C.ABD}} = \frac{1}{3}{S_{ABD}}.d\left( {C,\left( {ABD} \right)} \right)\)

\({V_{MNEC}} = {V_{C.MNE}} = \frac{1}{3}{S_{MNE}}.d\left( {C,\left( {MNE} \right)} \right) = \frac{1}{3}{S_{MNE}}.d\left( {C,\left( {ABD} \right)} \right)\)

\( \Rightarrow \frac{{{V_{MNEC}}}}{{{V_{ABCD}}}} = \frac{{\frac{1}{3}{S_{MNE}}.d\left( {C,\left( {ABD} \right)} \right)}}{{\frac{1}{3}{S_{ABD}}.d\left( {C,\left( {ABD} \right)} \right)}} = \frac{{{S_{MNE}}}}{{{S_{ABD}}}}\)

Dễ thấy \(\Delta MNE\) đồng dạng \(\Delta DAB\) theo tỉ số \(\frac{1}{2}\) nên \(\frac{{{S_{MNE}}}}{{{S_{ABD}}}} = {\left( {\frac{1}{2}} \right)^2} = \frac{1}{4}\)

Vậy \(\frac{{{V_{MNEC}}}}{{{V_{ABCD}}}} = \frac{{{S_{MNE}}}}{{{S_{ABD}}}} = \frac{1}{4}\).

Copyright © 2021 HOCTAP247