Cho hàm số y = f(x) có đạo hàm f'(x) = (lnx + 1) (e^x - 2019) (x + 1)

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm \[f'\left( x \right) = \left( {\ln x + 1} \right)\left( {{e^x} - 2019} \right)\left( {x + 1} \right)\] trên khoảng \[\left( {0; + \infty } \right)\]. Hỏi hàm số \[y = f\left( x \right)\] có bao nhiêu điểm cực trị?

* Đáp án

* Hướng dẫn giải

Đáp án: 2

Phương pháp giải:

Giải phương trình \(f'\left( x \right) = 0\) xác định số điểm cực trị bằng số nghiệm bội lẻ của phương trình \(f'\left( x \right) = 0\)

Giải chi tiết:

TXĐ: \(D = \left( {0; + \infty } \right)\)

Ta có:

\(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\ln x + 1 = 0}\\{{e^x} - 2019 = 0}\\{x + 1 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\ln x = - 1}\\{{e^x} = 2019}\\{x = - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{1}{e} \in \left( {0; + \infty } \right)}\\{x = \ln 2019 \in \left( {0; + \infty } \right)}\\{x = - 1 \notin \left( {0; + \infty } \right)}\end{array}} \right.\)

Vậy hàm số đã cho có 2 điểm cực trị.

Copyright © 2021 HOCTAP247