Cho f(x) là một đa thức thỏa mãn lim x đến 2 (f(x) -15) / (x - 2) = 3

Câu hỏi :

Cho \(f\left( x \right)\) là một đa thức thỏa mãn \(\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 15}}{{x - 2}} = 3\). Tính \(\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 15}}{{\left( {{x^2} - 4} \right)\left( {\sqrt {2f\left( x \right) + 6} + 3} \right)}}\).

* Đáp án

* Hướng dẫn giải

Đáp án: \[\frac{1}{{12}}\]

Phương pháp giải:

- Tính \[\mathop {\lim }\limits_{x \to 2} f\left( x \right)\]

- Phân tích  giới hạn \[\mathop {\lim }\limits_{x \to 2} \left[ {\frac{{f\left( x \right) - 15}}{{x - 2}}.\frac{1}{{\left( {x + 2} \right)\left( {\sqrt {2f\left( x \right) + 6} + 3} \right)}}} \right]\], sau đó tính giới hạn.

Giải chi tiết:

Đặt \[g\left( x \right) = \frac{{f\left( x \right) - 15}}{{x - 2}}\]\[ \Rightarrow f\left( x \right) = \left( {x - 2} \right)g\left( x \right) + 15\]

\[ \Rightarrow \mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \left[ {\left( {x - 2} \right)g\left( x \right) + 15} \right] = 15\]

Ta có: \[\mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 15}}{{\left( {{x^2} - 4} \right)\left( {\sqrt {2f\left( x \right) + 6} + 3} \right)}}\]

\[ = \mathop {\lim }\limits_{x \to 2} \frac{{f\left( x \right) - 15}}{{\left( {x - 2} \right)\left( {x + 2} \right)\left( {\sqrt {2f\left( x \right) + 6} + 3} \right)}}\]

\[ = \mathop {\lim }\limits_{x \to 2} \left[ {\frac{{f\left( x \right) - 15}}{{x - 2}}.\frac{1}{{\left( {x + 2} \right)\left( {\sqrt {2f\left( x \right) + 6} + 3} \right)}}} \right]\]

\[ = 3.\frac{1}{{4.\left( {\sqrt {2.15 + 6} + 3} \right)}} = 3.\frac{1}{{4.9}} = \frac{1}{{12}}\].

Copyright © 2021 HOCTAP247