Trang chủ Toán Học Lớp 7 cho Δ abc có AB=AC. gọi M là một điểm...

cho Δ abc có AB=AC. gọi M là một điểm nằm trong Δ sao cho MB=MC ; N là trung điểm của cạnh BC. chứng minh rằng a, AM là tia phân giác của góc BAC b, ba điểm

Câu hỏi :

cho Δ abc có AB=AC. gọi M là một điểm nằm trong Δ sao cho MB=MC ; N là trung điểm của cạnh BC. chứng minh rằng a, AM là tia phân giác của góc BAC b, ba điểm AMN thẳng hàng c, MN là đường trung trực của đoạn thẳng bc help me !!!!!!!

Lời giải 1 :

Giải thích các bước giải:


a) Xét \(\triangle AMB\) và \(\triangle AMC\) có: AB = AC (giả thiết) ; AM chung ; MB = MC (giả thiết).

\(\Rightarrow \triangle{ AMB} = \triangle{ AMC} \ (c.c.c)\).

\(\Rightarrow \widehat{ MAB} = \widehat{ MAC}\). Do đó AM là tia phân giác của góc \(\widehat{ BAC}\).

b) Xét \(\triangle ANB\) và \(\triangle ANC\) có: AB = AC (giả thiết) ; AN chung ; NB = NC (giả thiết).

\(\Rightarrow \triangle{ ANB} = \triangle{ ANC} \ (c.c.c)\).

\(\Rightarrow \widehat{ NAB} = \widehat{ NAC}\). Do đó AN là tia phân giác của góc \(\widehat{ BAC}\).

Vì AM, AN đều là tia phân giá của \(\widehat{ BAC}\) nên AM và AN trùng nhau.

Điều này có nghĩa là ba điểm A, M, N thẳng hàng.

c) Theo câu b) ta có \(\triangle{ ANB} = \triangle{ ANC} \Rightarrow \widehat{ ANB} = \widehat{ ANC}\)

Suy ra \(\widehat{ ANB} = \widehat{ ANC} = 90^0 \Rightarrow AN \perp BC\).

Mà N lại là trung điểm của BC nên suy ra AN là đường trung trực của đoạn thẳng BC.

Do A, M, N thẳng hàng nên ta cũng có MN là đường trung trực của đoạn thẳng BC.

 

image

Thảo luận

Lời giải 2 :

Do MB = MC nên M thuộc trung trực BC.

Lại có N là trung điểm của BC nên MN là trung trực BC.

Mặt khác, lại có AB = AC nên A cũng thuộc trung trực của BC. 

Vậy A, M, N thẳng hàng.

Do N là trung điểm BC nên NB = NC.

Xét tam giác ABN và tam giác ACN có

$AB = AC$, $BN = CN$, $AN$ chung.

Vậy tam giác ABN = tam giác ACN. Suy ra $\widehat{BAN} = \widehat{CAN}$.

Suy ra AN là phân giác $\widehat{BAC}$ hay $AM$ là phân giác $\widehat{BAC}$.

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!

Nguồn : ADMIN :))

Copyright © 2021 HOCTAP247