a) Chứng minh tứ giác MBKD là hình thang.
- Đầu tiên CM tứ giác MBND là hình bình hành.
Vì ABCD là hình bình hành AD = BC AN = ND = BM = MC
Và AD // BC=> ND // BM
Xét tứ giác MBND, ta có:
ND // BM
ND = BM
Tứ giác MBND là hình bình hành.
NB // MD . Mà NB giao với MD = {K}=> B, N , K thẳng hàng.
Xét tứ giác MBKD, ta có:
NB // MD
B, N , K thẳng hàng
=> MD // BK
=>Tứ giác MBKD là hình thang ( đpcm ).
b)
Vì P thuộc BK, Q thuộc MD mà BK // MD QM // PN ( 1 )
Vì P thuộc AM, Q thuộc NC PM // QN (2)
Từ (1), (2)=> PMQN là hình bình hành. ( 3 )
Theo CM ở câu a) ANMB là hình thoi ( có 4 cạnh bằng nhau )
AM vuông góc với BN. (4)
Từ (3), (4) PMQN là hình chữ nhật.
* Để PMQN là hình vuông thì hình bình hành phải có thêm điều kiện là góc A = 90o
Nếu A = 90o thì tứ giác ANMB là hình vuông=> AM vuông góc với BN
Theo tính chất đường chéo của hình vuông=> PN = PM
Hình chữ nhật PMQN có 2 cạnh kề bằng nhau nên nó sẽ là hình vuông ( đpcm )
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAP247