1. Xét tam giác AHB và tam giác BCD, có:
góc AHB = góc BCD = 90o
góc ABH = góc BDC (slt)
Vậy tam giác AHB đồng dạng tam giác BCD. (g-g)
2. Áp dụng định lý Pytago vào tam giác ABD vuông tại A, có:
BD2 = AB2 + AD2
BD = 25(cm)
Có: diện tích tam giác ABD = 1/2.AB.AD
diện tích tam giác ABD = 1/2.AH.BD
=> AB.AD = AH.BD
=> 20.15 = AH.25
=> AH = 12(cm)
3.
a) Vì AH // IM (cùng vuông góc với BD), theo định lý Thalet
=> BA/BI = BH/BM (1)
Xét tam giác IEB, có:
BM là đường cao (vì BM vuông góc với OE)
EA là đường cao (vì AE vuông góc với OB)
BM cắt EA tại D
=> IN là đường cao thứ 3 của tam giác OEB
Vì AK // IN (do cùng vuông góc với BE), theo định lý Thalet
=> BA/BI = BK/BE (2)
Từ (1) và (2) => BA/BỊ = BK/BÉ = BH/BM
theo định lý Thalet đảo
=> HK // MN (3)
b) Có: AF // EN (do cùng vuông góc với IN), theo hệ quả của định lý Thalet
=> DF/DN = DA/DE
Có: AH // EM (do cùng vuông góc với BM), theo hệ quả của định lý Thalet
=> DA/DE = DH/DM
Xét tam giác DFH và tam giác DNM, có:
góc FDH = góc NDM (đđ)
DF/DN = DH/DM (cùng bằng DA/DE)
Vậy tam giác DFH đồng dạng tam giác DNM. (c-g-c)
=> góc DFH = góc DNM
mà 2 góc này ở vị trí slt
=> FH // MN (4)
Có: góc DHF + góc FHA = 90o
mà góc DHF = góc BHK (đđ)
=> góc FHA + góc BHK = 90o
Lại có: góc FHK = góc AHB + góc FHA + góc BHK = 90o + 90o = 180o (5)
Từ (3),(4), (5) => F, H, K thẳng hàng
Chúc bạn hok tốt ~
Đáp án:
1. Xét tam giác AHB và tam giác BCD, có:
góc AHB = góc BCD = 90o
góc ABH = góc BDC (slt)
Vậy tam giác AHB đồng dạng tam giác BCD. (g-g)
2. Áp dụng định lý Pytago vào tam giác ABD vuông tại A, có:
BD2 = AB2 + AD2
BD = 25(cm)
Có: diện tích tam giác ABD = 1/2.AB.AD
diện tích tam giác ABD = 1/2.AH.BD
=> AB.AD = AH.BD
=> 20.15 = AH.25
=> AH = 12(cm)
3.
a) Vì AH // IM (cùng vuông góc với BD), theo định lý Thalet
=> BA/BI = BH/BM (1)
Xét tam giác IEB, có:
BM là đường cao (vì BM vuông góc với OE)
EA là đường cao (vì AE vuông góc với OB)
BM cắt EA tại D
=> IN là đường cao thứ 3 của tam giác OEB
Vì AK // IN (do cùng vuông góc với BE), theo định lý Thalet
=> BA/BI = BK/BE (2)
Từ (1) và (2) => BA/BỊ = BK/BÉ = BH/BM
theo định lý Thalet đảo
=> HK // MN (3)
b) Có: AF // EN (do cùng vuông góc với IN), theo hệ quả của định lý Thalet
=> DF/DN = DA/DE
Có: AH // EM (do cùng vuông góc với BM), theo hệ quả của định lý Thalet
=> DA/DE = DH/DM
Xét tam giác DFH và tam giác DNM, có:
góc FDH = góc NDM (đđ)
DF/DN = DH/DM (cùng bằng DA/DE)
Vậy tam giác DFH đồng dạng tam giác DNM. (c-g-c)
=> góc DFH = góc DNM
mà 2 góc này ở vị trí slt
=> FH // MN (4)
Có: góc DHF + góc FHA = 90o
mà góc DHF = góc BHK (đđ)
=> góc FHA + góc BHK = 90o
Lại có: góc FHK = góc AHB + góc FHA + góc BHK = 90o + 90o = 180o (5)
Từ (3),(4), (5) => F, H, K thẳng hàng
HỌC TỐT NHEN
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAP247