Trang chủ Toán Học Lớp 6 tim số tự nhiên n đểA=2n+6/n+1 để A là số...

tim số tự nhiên n đểA=2n+6/n+1 để A là số nguyên tố câu hỏi 3747705 - hoctapsgk.com

Câu hỏi :

tim số tự nhiên n đểA=2n+6/n+1 để A là số nguyên tố

Lời giải 1 :

Đáp án:

`A = (2n + 6)/(n + 1)`

`A = (2n + 2 + 4)/(n + 1)`

`A = [2.(n + 1)  + 4]/[n + 1]`

`A= [2.(n  + 1)]/[n  + 1] + 4/[n + 1]` 

`A = 2 + 4/[n + 1]`

`-> n + 1 ∈ Ư_{(4)} = {1;-1;2;-2;4;-4}`

`-> n ∈ {0; -2; 1; -3; 3; -5}`

mà: `n ∈ NN`

`-> n ∈ {0;  1;  3}`

`@` Với `n = 3`

`-> A = [2.3 + 6]/[3 + 1] = 12/4 = 3`

`3` là số nguyên tố

`->` Chọn

`@` Với `n = 0`

`-> A = [2.0 + 6]/[0 + 1] = 6/1 = 6`

`6` không phải là số nguyên tố

`->` Loại

`@` Với `n = 1`

`-> A = [2.1 + 6]/[1 + 1] = 8/2 = 4`

`4` không phải là số nguyên tố

`->` Loại

Vậy `n = 3` để `A = (2n + 6)/(n + 1)` là số nguyên tố

$#dariana$

Thảo luận

Lời giải 2 :

Đáp án + Giải thích các bước giải:

ta có 2n+6 chia hết cho n+1

2n+6 = 2n+2+4 =2(n+1)+4

 mà 2(n+1)chia hết cho n ,suy ra

4 cũng phải chia hết cho n =>n thuộc ư(4)

Ư(4)=1;2;4

     thử chọn:

 n+1=1=> n=0(0 ko pải là số nguyên tố nên ta loại)

n+1=2=>n=1(1 ko pải là số nguyên tố nên ta loại)

n+1=4=>n=3(3 là số nguyên tố nên ta chọn)

Vậy n=3

CHÚC BN HỌC TỐT VÀ ĐỪNG QUÊN ĐÁNH GIÁ CHO MIK NHA

#nguyetphan52

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 6

Lớp 6 - Là năm đầu tiên của cấp trung học cơ sở. Được sống lại những khỉ niệm như ngày nào còn lần đầu đến lớp 1, được quen bạn mới, ngôi trường mới, một tương lai mới!

Nguồn : ADMIN :))

Copyright © 2021 HOCTAP247