Xét các chuỗi hàm An và Un từ {\displaystyle \mathbb {R} } tới {\displaystyle \mathbb {R} } cho {\displaystyle n\in \mathbb {N} _{0}} mà được định nghĩa bởi:
{\displaystyle {\begin{aligned}A_{0}(x)&=\sin(x),&&A_{n+1}(x)=\int _{0}^{x}yA_{n}(y)\,dy\\[4pt]U_{0}(x)&={\frac {\sin(x)}{x}},&&U_{n+1}(x)=-{\frac {U_{n}'(x)}{x}}\end{aligned}}}
Sử dụng quy nạp chúng ta có thể chứng minh rằng
{\displaystyle {\begin{aligned}A_{n}(x)&={\frac {x^{2n+1}}{(2n+1)!!}}-{\frac {x^{2n+3}}{2\times (2n+3)!!}}+{\frac {x^{2n+5}}{2\times 4\times (2n+5)!!}}\mp \cdots \\[4pt]U_{n}(x)&={\frac {1}{(2n+1)!!}}-{\frac {x^{2}}{2\times (2n+3)!!}}+{\frac {x^{4}}{2\times 4\times (2n+5)!!}}\mp \cdots \end{aligned}}}{\displaystyle U_{n}(x)={\frac {A_{n}(x)}{x^{2n+1}}}.\,}
Vì thế
{\displaystyle {\begin{aligned}{\frac {A_{n+1}(x)}{x^{2n+3}}}&=U_{n+1}(x)=-{\frac {U_{n}'(x)}{x}}=-{\frac {1}{x}}{\frac {\mathrm {d} }{\mathrm {d} x}}\left({\frac {A_{n}(x)}{x^{2n+1}}}\right)\\[6pt]&=-{\frac {1}{x}}\left({\frac {A_{n}'(x)\cdot x^{2n+1}-(2n+1)x^{2n}A_{n}(x)}{x^{2(2n+1)}}}\right)={\frac {(2n+1)A_{n}(x)-xA_{n}'(x)}{x^{2n+3}}}\end{aligned}}}
tương đương với
{\displaystyle A_{n+1}(x)=(2n+1)A_{n}(x)-x^{2}A_{n-1}(x).\,}
Sử dụng định nghĩa của chuỗi và sử dụng phép quy nạp, chúng ta có thể chứng minh được rằng
{\displaystyle A_{n}(x)=P_{n}(x^{2})\sin(x)+xQ_{n}(x^{2})\cos(x),\,}
Trong đó Pn và Qn là các hàm đa thức có hệ số nguyên và bậc của Pn nhỏ hơn hoặc bằng ⌊n/ 2⌋. Cụ thể, An (π/2) = Pn (π2/4).
Hermite cũng đưa ra biểu thức đóng cho hàm An, cụ thể là
{\displaystyle A_{n}(x)={\frac {x^{2n+1}}{2^{n}n!}}\int _{0}^{1}(1-z^{2})^{n}\cos(xz)\,\mathrm {d} z.\,}
Trước hết, khẳng định này tương đương với
{\displaystyle {\frac {1}{2^{n}n!}}\int _{0}^{1}(1-z^{2})^{n}\cos(xz)\,\mathrm {d} z={\frac {A_{n}(x)}{x^{2n+1}}}=U_{n}(x).}
Tiến hành theo quy nạp, lấy n = 0.
{\displaystyle \int _{0}^{1}\cos(xz)\,\mathrm {d} z={\frac {\sin(x)}{x}}=U_{0}(x)}
và, đối với bước quy nạp, xem xét bất kỳ {\displaystyle n\in \mathbb {N} }. Nếu
{\displaystyle {\frac {1}{2^{n}n!}}\int _{0}^{1}(1-z^{2})^{n}\cos(xz)\,\mathrm {d} z=U_{n}(x),}
Nếu π2/4 = p/q, với p và q thuộc {\displaystyle \mathbb {N} }, thì vì các hệ số của Pn là các số nguyên và bậc của nó nhỏ hơn hoặc bằng ⌊n/2⌋, q⌊ n / 2⌋Pn(π 2/4) là một số nguyên N. Nói cách khác,
{\displaystyle N=q^{\left\lfloor {\frac {n}{2}}\right\rfloor }A_{n}\left({\frac {\pi }{2}}\right)=q^{\left\lfloor {\frac {n}{2}}\right\rfloor }{\frac {\left({\frac {p}{q}}\right)^{n+{\frac {1}{2}}}}{2^{n}n!}}\int _{0}^{1}(1-z^{2})^{n}\cos \left({\frac {\pi }{2}}z\right)\,\mathrm {d} z.}
=> π là số vô tỉ
Số π (pi) là vô tỷ: Nghĩa là nó không thể được biểu thị dưới dạng phân số $\frac{a}{b}$, trong đó $a$ là số nguyên và $b$ là số nguyên khác không
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 12 - Năm cuối ở cấp tiểu học, năm học quan trọng nhất trong đời học sinh trải qua bao năm học tập, bao nhiêu kì vọng của người thân xung quanh ta. Những nỗi lo về thi đại học và định hướng tương lai thật là nặng. Hãy tin vào bản thân là mình sẽ làm được rồi tương lai mới chờ đợi các em!
Nguồn : ADMIN :))Copyright © 2021 HOCTAP247