a, Xét \(\Delta BAD\) và \(\Delta BED\) có:
\(\widehat{BAD}=\widehat{BED}=90^0\)
BD chung
\(\widehat{ABD}=\widehat{EBD}\) (do BD là phân giác \(\widehat{ABC}\))
\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)
\(\Rightarrow AB=EB\Rightarrow\) B nằm trên trung trực của AE (1)
\(AD=ED\Rightarrow\) D nằm trên trung trực của AE (2)
Từ (1) và (2) => BD là trung trực của AE
Vậy BD là trung trực của AE.
b, Xét \(\Delta ADF\) và \(\Delta EDC\) có:
\(\widehat{DAF}=\widehat{DEC}=90^0\)
AD=ED
\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)
\(\Rightarrow\Delta ADF=\Delta EDC\left(g-c-g\right)\)
=> DF=DC.
Vậy DF=DC
c, Ta có: tam giác ADF vuông tại A=> cạnh huyền DF>AD (3)
Mà DF=DC (4)
Từ (3) và (4) => AD<DC
Vậy AD<DC
d, Ta có:
+) CA là đường cao từ C của tam giác BCF
+) FE là đường cao từ F của tam giác BCF
Mà CA và FE cắt nhau tại D => D là trực tâm của tam giác BCF
=> BD là đường cao từ B của tam giác BCF => \(BD\perp FC\) (5)
Mặt khác, BD là trung trực của AE \(\Rightarrow BD\perp AE\) (6)
Từ (5) và (6) => AE//FC
Vậy AE//FC
Đáp án:
Giải thích các bước giải:
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAP247