Câu 2:
Gọi a là số luống, b là số rau/luống ($a, b \in \mathbb{N^*}$)
Số rau trong vườn là $ab$.
Nếu số luống là $a+8$, số rau/luống là $b-4$ thì số rau là $(a+8)(b-4)= ab-4a+8b-32$
$\Rightarrow ab-4a+8b-32=ab-48$
$\Leftrightarrow 4a-8b=16$ (1)
Nếu số luống là $a-4$, số rau/luống là $b+3$ thì số rau là $(a-4)(b+3)= ab+3a-4b-12$
$\Rightarrow ab+3a-4b-12=ab+32$
$\Leftrightarrow 3a-4b=44$ (2)
(1)(2) $\Rightarrow a=36; b=16$ (TM)
Vậy số rau trong vườn là $36.16=576$ cây.
Câu 4:
a, (như hình)
b,
Thay $x=3$ vào (P), ta có:
$y=0,5.3^2=4,5$
Vậy toạ độ giao điểm là $(3;4,5)$
(D): $y=-2x+b$
Thay vào (D):
$-2.3+b=4,5$
$\Leftrightarrow b=10,5$
Vậy (D): $y=-2x+10,5$
Gọi số luống rau cải bắp là x (luống)
Gội số cây rau cải bắp trên mỗi luống là y (luống)
Gọi số cây rau cải bắp toàn vườn là xy
Nếu tăng thêm 8 luống rau nhưng mỗi luống trồng ít đi 4 cây thì số cây toàn vườn ít đi 48 cây nên tao có pt:
(x+8).(y-4)=xy-48 (1)
Nếu giảm đi 4 luống nhưng mỗi luống trồng thêm 3 cây thì số rau toàn vườn sẽ tăng thêm 32 cây nên ta có phương trình:
(x-4).(y+3)=xy+32 (2)
Từ (1) và (2) ta có phương trình
KHÔNG HIỂU IB MÌNH NÓI KĨ 😝
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!
Nguồn : ADMIN :))Copyright © 2021 HOCTAP247