Trang chủ Toán Học Lớp 9 c) V(4-V17)2; d) 2/3+ V(2- VE 15. Chứng minh a)...

c) V(4-V17)2; d) 2/3+ V(2- VE 15. Chứng minh a) 9+4/5 =(/5 +2)² ; b) V9-4/5 -VE %3D c) (4-17)2 = 23– 8/7 ; d) V23+8/7 – w %3D - 16. Biểu thức sau đây xác đ

Câu hỏi :

Ko làm được huhuhuhuhuhu ToT

image

Lời giải 1 :

Đáp án:

 

Giải thích các bước giải:

15/

a)

Ta có:  

\(\eqalign{
& VT =9 + 4\sqrt 5 = 4 + 2.2\sqrt 5 + 5 \cr 
& = {2^2} + 2.2\sqrt 5 + {\left( {\sqrt 5 } \right)^2} = {\left( {2 + \sqrt 5 } \right)^2} \cr} \)

Vế trái bằng vế phải nên đẳng thức được chứng minh. 

b) 

Ta có:

 \(VT =\sqrt {9 - 4\sqrt 5 }  - \sqrt 5 \) \(= \sqrt {5 - 2.2\sqrt 5  + 4}  - \sqrt 5 \)

\(= \sqrt {{{\left( {\sqrt 5 } \right)}^2} - 2.2\sqrt 5 + {2^2}} - \sqrt 5 \) 
\(= \sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} - \sqrt 5 \)

\(=\left| {\sqrt 5  - 2} \right| - \sqrt 5  \)\(= \sqrt 5  - 2 - \sqrt 5  =  - 2\)

Vế trái bằng vế phải nên đẳng thức được chứng minh.

c)

Ta có:

\(VT = {\left( {4 - \sqrt 7 } \right)^2}\)\(= {4^2} - 2.4.\sqrt 7 + {\left( {\sqrt 7 } \right)^2} \)
\( = 16 - 8\sqrt 7 + 7 = 23 - 8\sqrt 7 \)

Vế trái bằng vế phải nên đẳng thức được chứng minh. 

d)

Ta có:

\( VT =\sqrt {23 + 8\sqrt 7 } - \sqrt 7 \)
\( = \sqrt {16 + 2.4.\sqrt 7 + 7} - \sqrt 7  \)

\(=\sqrt {{4^2} + 2.4.\sqrt 7 + {{\left( {\sqrt 7 } \right)}^2}} - \sqrt 7 \)
\( = \sqrt {{{\left( {4 + \sqrt 7 } \right)}^2}} - \sqrt 7  \)

\(=\left| {4 + \sqrt 7 } \right| - \sqrt 7  \)\(= 4 + \sqrt 7  - \sqrt 7  = 4\)

Vế trái bằng vế phải nên đẳng thức được chứng minh. 

16/

a)

Ta có:  \( \displaystyle\sqrt {(x - 1)(x - 3)} \) xác định khi và chỉ khi :

\( \displaystyle(x - 1)(x - 3) \ge 0\)

Trường hợp 1: 

\( \displaystyle\left\{ \matrix{
x - 1 \ge 0 \hfill \cr 
x - 3 \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 1 \hfill \cr 
x \ge 3 \hfill \cr} \right. \Leftrightarrow x \ge 3\)

Trường hợp 2:

\( \displaystyle\left\{ \matrix{
x - 1 \le 0 \hfill \cr 
x - 3 \le 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le 1 \hfill \cr 
x \le 3 \hfill \cr} \right. \Leftrightarrow x \le 1\)

Vậy với \(x ≤ 1\) hoặc \(x ≥ 3\) thì  \( \displaystyle\sqrt {(x - 1)(x - 3)} \) xác định.

b)

Ta có:  \( \displaystyle\sqrt {{x^2} - 4} \) xác định khi và chỉ khi: 

\( \displaystyle\eqalign{
& {x^2} - 4 \ge 0 \Leftrightarrow {x^2} \ge 4 \cr 
& \Leftrightarrow \left| x \right| \ge 2 \Leftrightarrow \left[ \matrix{
x \ge 2 \hfill \cr 
x \le - 2 \hfill \cr} \right. \cr} \)

Vậy với \(x ≤ -2\) hoặc \(x ≥ 2\) thì  \( \displaystyle\sqrt {{x^2} - 4} \) xác định.

c)

Ta có: \( \displaystyle\sqrt {{{x - 2} \over {x + 3}}} \) xác định khi và chỉ khi: \( \displaystyle {{{x - 2} \over {x + 3}}} \ge 0\)

Trường hợp 1: 

\( \displaystyle\left\{ \matrix{
x - 2 \ge 0 \hfill \cr 
x + 3 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 2 \hfill \cr 
x > - 3 \hfill \cr} \right. \Leftrightarrow x \ge 2\)

Trường hợp 2:

\( \displaystyle\left\{ \matrix{
x - 2 \le 0 \hfill \cr 
x + 3 < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le 2 \hfill \cr 
x < - 3 \hfill \cr} \right. \Leftrightarrow x < - 3\)

Vậy với \(x < -3\) hoặc \(x ≥ \)2 thì \( \displaystyle\sqrt {{{x - 2} \over {x + 3}}} \) xác định.

d)

Ta có: \( \displaystyle\sqrt {{{2 + x} \over {5 - x}}} \) xác định khi và chỉ khi \( \displaystyle{{2 + x} \over {5 - x}} \ge 0\)

Trường hợp 1: 

\( \displaystyle\eqalign{
& \left\{ \matrix{
2 + x \ge 0 \hfill \cr 
5 - x > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge - 2 \hfill \cr 
x < 5 \hfill \cr} \right. \cr 
& \Leftrightarrow - 2 \le x < 5 \cr} \)

Trường hợp 2: 

\( \displaystyle\left\{ \matrix{
2 + x \le 0 \hfill \cr 
5 - x < 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \le - 2 \hfill \cr 
x > 5 \hfill \cr} \right.\)

\( \displaystyle \Leftrightarrow \) vô nghiệm.

Vậy với \(-2 ≤ x < 5\) thì \( \displaystyle\sqrt {{{2 + x} \over {5 - x}}} \) xác định.

Thảo luận

Lời giải 2 :

Đáp án:

 

Giải thích các bước giải:

 16 

a, căn (x-1)(x-3) xác định <=>Th1  x-1>=0 <=> x>=1

                                                TH2  x-3>=0  <=> x>=3 

                                    vậy để căn (x-1)(x-3) đc xác định thì x>=1, x>=3

b, căn x^2 -4 xác định <=> x^2-4>=0

                                     <=> X^2 - 2^2 >= 0

                                     <=> (x-2)(x+2) >=0

                                     th1 x-2 lớn hơn bằng 0

                                       <=> x lớn hơn bằng 2

                                      Th2 x+2 lớn hơn bằng 0

                                        <=> x lớn hơn bằng -2

                                    vậy.....(như câu trên )

c, căn x-2/x+3 xđ <=> x-2/x+3 >=0

                             <=> x-2 lớn hơn bằng 0 <=> x lớn hơn bằng 2

                              <=> x+3>0 ( vì ở dưới mẫu nên k có lớn hơn bằng)

                               <=> x > -3

                           Vậy....

d bạn lm như câu c nha nhớ là dưới mẫu k có bằng chỉ lớn hơn 0 thui

                                           

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 9

Lớp 9 - Là năm cuối ở cấp trung học cơ sở, sắp phải bước vào một kì thi căng thẳng và sắp chia tay bạn bè, thầy cô và cả kì vọng của phụ huynh ngày càng lớn mang tên "Lên cấp 3". Thật là áp lực nhưng các em hãy cứ tự tin vào bản thân là sẻ vượt qua nhé!

Nguồn : ADMIN :))

Copyright © 2021 HOCTAP247