Trang chủ Toán Học Lớp 6 Chứng tỏ với mọi số tự nhiên n thì tích...

Chứng tỏ với mọi số tự nhiên n thì tích :( m+3). (n+6) chia hết cho 2 câu hỏi 164833 - hoctapsgk.com

Câu hỏi :

Chứng tỏ với mọi số tự nhiên n thì tích :( m+3). (n+6) chia hết cho 2

Lời giải 1 :

Ta sẽ có 2 trường hợp:1 là số chẵn;2 là số lẻ

Nếu n là số chẵn thì khi nhân với bất kì số nào cug chia hết cho 2 =>n.(n+3).(n+6) chia hết cho 2

Vd 1 số chẵn:6.(6+3).(6+6) chia hết cho 2

Nếu n là số chẳn thì ta có (n+3) là số chẵn;(n+6) là số lẻ thì số chắn nhân số lẻ là mốt số chẵn và bất cứ số chẵn nào cug chia hết cho 2=>n.(n+3).(n+6) chia hết cho 2

Vd 1 số lẻ:5.(5+3).(5+6) chia hết cho 2

Vấy bất cứ số tự nhiên N nào cug chia hết cho 2

 

Thảo luận

Lời giải 2 :

Đáp án:

 

Giải thích các bước giải:

Tập hợp số tự nhiên gồm có các số chẵn và các số lẻ

+) Nếu \(n\) chẵn thì \(n\; ⋮\; 2\) nên có dạng \( n = 2k \;( k \in \mathbb N)\)

Suy ra: \(n + 6 = 2k + 6\)

Vì \(( 2k + 6)=2(k+3) \;⋮\;  2\) nên \((n+3)(n+6)\; ⋮\; 2\)

+) Nếu \(n\) lẻ tức \(n\) không chia hết cho 2 nên có dạng \(n = 2k + 1\; (k \in \mathbb N )\)

Suy ra: \(n + 3 = 2k + 1 + 3 = 2k + 4\) 

Vì \(( 2k +4) =2(k+2)\;⋮ \; 2\) nên \((n+3)(n+6) \;⋮\;  2\)

Vậy \((n+3)(n+6)\) chia hết cho \(2\) với mọi số tự nhiên \(n.\) 

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 6

Lớp 6 - Là năm đầu tiên của cấp trung học cơ sở. Được sống lại những khỉ niệm như ngày nào còn lần đầu đến lớp 1, được quen bạn mới, ngôi trường mới, một tương lai mới!

Nguồn : ADMIN :))

Copyright © 2021 HOCTAP247