Thảo luận
-- $VT \le \sqrt{1+\dfrac{2 \sqrt{3(a^2+b^2+c^2)}}{3}}$
-- `=>` $VT \le \dfrac{\sqrt{(a+b+c[a(1+b+c)+b(1+c+a)+c(1+a+b)]}}{a+b+c}$
`=>` $VT \le \sqrt{1+\dfrac{2(ab+bc+ac)}{a+b+c}}$
`=>` $VT \le \sqrt{1+\dfrac{2(a+b+c)}{3}}$
`=>` $VT \le \sqrt{1+\dfrac{2 \sqrt{3(a^2+b^2+c^2)}}{3}}$
$"="$ xảy ra khi: $a=b=c=1$
-- Cho $a,b,c>0$ $\text{Cmr:}$
$\dfrac{a^{2016}}{b+c-a}+\dfrac{b^{2016}}{b+c-a}+\dfrac{c^{2016}}{a+b-c} \ge a^{2015}+b^{2015}+c^{2015}$
--
$\dfrac{a^{2016}}{b+c-a}=a^{2015}.\dfrac{a}{b+c-a}$
$\dfrac{b^{2016}}{a+c-b}=b^{2015}.\dfrac{b}{a+c-b}$
$\dfrac{c^{2016}}{a+b-c}=c^{2015}.\dfrac{c}{a+b-c}$
Giả sử: $a \ge b \ge c$
$\text{BĐT Chev(Chebyshev):}$
$\displaystyle\sum\limits_{cyc} a^{2015} . \displaystyle\sum\limits_{cyc} \dfrac{a}{b+c-a} \ge \dfrac{1}{3}.\displaystyle\sum\limits_{cyc} a^{2015}.\displaystyle\sum\limits_{cyc} \dfrac{a}{b+c-a}$
Xét:
$\displaystyle\sum\limits_{cyc} \dfrac{a}{b+c-a}+\dfrac{3}{2}=\dfrac{a}{b+c-a}+\dfrac{1}{2}+\dfrac{b}{a+c-b}+\dfrac{1}{2}+\dfrac{c}{a+b-c}+\dfrac{1}{2}$
`=>` $\displaystyle\sum\limits_{cyc} \dfrac{a}{b+c-a}+\dfrac{3}{2}=\dfrac{a+b+c}{2}.\displaystyle\sum\limits_{cyc} \dfrac{1}{b+c-a}$
$\text{BĐT Cauchy-Schwarz:}$
$\displaystyle\sum\limits_{cyc} \dfrac{1}{b+c-a} \ge \dfrac {9}{a+b+c}$
`=>` $\displaystyle\sum\limits_{cyc} \dfrac{a}{b+c-a} \ge \dfrac{6}{2}=3$
`=>` $\displaystyle\sum\limits_{cyc} a^{2015} . \displaystyle\sum\limits_{cyc} \dfrac{a}{b+c-a} \ge \dfrac{1}{3}.\displaystyle\sum\limits_{cyc} a^{2015}.3=\displaystyle\sum\limits_{cyc} a^{2015} . \displaystyle\sum\limits_{cyc} \dfrac{a}{b+c-a} \ge \dfrac{1}{3}.\displaystyle\sum\limits_{cyc} a^{2015}.3=\displaystyle\sum\limits_{cyc} a^{2015}$
$"="$ xảy ra khi: $a=b=c$ Rút gọn$\dfrac{a^{2016}}{b+c-a}=a^{2015}.\dfrac{a}{b+c-a}$
$\dfrac{b^{2016}}{a+c-b}=b^{2015}.\dfrac{b}{a+c-b}$
$\dfrac{c^{2016}}{a+b-c}=c^{2015}.\dfrac{c}{a+b-c}$
Giả sử: $a \ge b \ge c$
$\text{BĐT Chev(Chebyshev):}$
$\displaystyle\sum\limits_{cyc} a^{2015} .... xem thêm
-- `=>` $\displaystyle\sum\limits_{cyc} a^{2015} . \displaystyle\sum\limits_{cyc} \dfrac{a}{b+c-a} \ge \dfrac{1}{3}.\displaystyle\sum\limits_{cyc} a^{2015}.3=\displaystyle\sum\limits_{cyc} a^{2015}$
-- $"="$ xảy ra khi: $a=b=c$
-- Cho tam $ABC$ và hai điểm $M,N$ nằm trong tam giác. Gọi $D,E$ và $F$ là các điểm nằm trên cạnh $BC,AC$ và $AB$ tương ứng sao cho: $MD//NA$, $ME//BN$, $MF//CN$.
$\text{Cmr $S_{DEF} \le \dfrac{1}{4}.S_{ABC}$}$
--
Đặt:
$\begin{cases} S_{NBC}=a\\S_{ACN}=b\\S_{BAN}=c\\S_{MBC}=x\\S_{ACM}=y\\S_{BAN}=z\\S_{ABC}=s\end{cases}$
Theo phép đặt:
$S_{ABC}=a+b+c=x+y+z=s$
Ta có:
$ME//BN;MD//AN$
`=>` $\dfrac{S_{MDE}}{S_{ABN}}=\dfrac{MD}{AN}.\dfrac{ME}{BN}$
`=>` $\dfrac{S_{BMC}}{S_{BAN}+S_{ACN}}.\dfrac{S_{ACM}}{S_{BAN}+S_{BNC}}=\dfrac{xy}{(a+c)(b+c)}$
Tương tự:
$\dfrac{S_{MEF}}{S_{BCN}}=\dfrac{yz}{(a+b)(a+c)}$
$\dfrac{S_{MFD}}{S_{BCN}}=\dfrac{xz}{(b+c)(a+b)}$
`=>` $S_{DEF}=\dfrac{ayz}{(a+b)(a+c)}+\dfrac{bzx}{(b+c)(a+b)}+\dfrac{xyc}{(a+c)(b+c)}$
Quy đồng ta cần chứng minh đẳng thức không vượt quá $\dfrac{a+b+c}{4}=\dfrac{1}{4}.S_{ABC}$:
Cần chứng minh:
$4[a(b+c)yz+b(a+c)xz+c(a+b)xy] \le (a+b)(b+c)(a+c)(a+b+c)$
Lại có:
$4[a(b+c)yz+b(a+c)xz+c(a+b)xy]=4[abz(x+y)+bcx(y+z)+yac(x+z)]$
Sử dụng $\text{BĐT Cauchy:}$
$4abz(x+y)=4ab(c+z)(x+y)-4abc(x+y) \le ab(x+y+z+c)^2-4abc(x+y)=ab(s+c)^2-4abc(x+y)$
Tương tự:
$4bcx(y+z) \le bc(s+a)^2-4abc(y+z)$
$4yac(x+z) \lr ac(s+b)^2-4abc(x+z)$
Cộng các vế:
$4[a(b+c)yz+b(a+c)xz+c(a+b)xy] \le ab(s+c)^2+bc(s+a)^2+ac(s+b)^2-8sabc$
`=>` $VT \le (ab+bc+ac)s^2+6sabc+abc(a+b+c)-8sabc$
`=>` $VT \le (ab+bc+ac)s^2-sabc$
`=>` $VT \le s(a+b)(b+c)(a+c)$
Dấu $'='$ xảy ra khi: $c+z=x+y;a+x=y+z;b+y=x+z$
`=>` $z=\dfrac{a+b}{2};y=\dfrac{a+c}{2};x=\dfrac{b+c}{2}$ Rút gọnĐặt:
$\begin{cases} S_{NBC}=a\\S_{ACN}=b\\S_{BAN}=c\\S_{MBC}=x\\S_{ACM}=y\\S_{BAN}=z\\S_{ABC}=s\end{cases}$
Theo phép đặt:
$S_{ABC}=a+b+c=x+y+z=s$
Ta có:
$ME//BN;MD//AN$
`=>` $\dfrac{S_{MDE}}{S_{ABN}}=\dfrac{MD}{AN}.\dfrac{ME}{BN}$
`=>` $\dfrac{S_{BMC}... xem thêm