Đáp án:
Giải thích các bước giải:
a) Ta có:AM+MB=AB
AN+NC=AC
mà AM=AN , AB=AC (gt)
=> MB=NC
AM=AN => ΔAMN cân tại A
=> ∠AMN=∠ANM
=>∠BMN=∠CNM ( do kề bù)
Xét ΔBMN và ΔCNM có
.MB=NC(cmt)
.∠BMN=∠CNM
.MN là cạnh chung
=>ΔBMN=ΔCNM(c-g-c)
=>BN=CM
b) AB=AC=> ΔABC cân tại A
=> ∠ABC=∠ACB
Xét ΔBMC vàΔCNB có
.MB=NC(cmt)
.∠ABC=∠ACB(cmt)
.BC là cạnh chung
=>ΔBMC=ΔCNB(c-g-c)
=>∠BMC=∠CNB
XétΔBIM và ΔCIN có
.∠BMC=∠CNB(cmt)
.MB=NC(cmt)
.∠MBN=∠NCM(ΔBMN=ΔCNM cmt)
=>ΔBIM=ΔCIN(g-c-g)
c) Đề hơi kì nha bạn, mình nghĩ là AI là p/g của ∠BAC thì đúng hơn
Xét ΔABI và ΔACI
.BI=CI (ΔBIM=ΔCIN cmt)
.∠MBN=∠NCM((ΔBMN=ΔCNM cmt)
.AB=AC(gt)
=>ΔABI=ΔACI(c-g-c)
=>∠BAI=∠CAI
=> AI là p/g ∠BAC
a) Xét ΔABN và ΔACM có:
AB = AC (gt)
∠A: góc chung
AN = AM (gt)
⇒ ΔABN = ΔACM (c.g.c)
⇒ BN = CM (2 cạnh tương ứng)
b) ΔABC có AB = AC (gt)
⇒ ΔABC cân tại A ⇒ ∠ABC = ∠ACB
hay ∠MBC = ∠NCB
Ta có: AB = AC (gt); AM = AN (gt)
⇒ AB - AM = AC - AN
⇒ BM = CN
Xét ΔBMC và ΔCNB có:
BM = CN (cmt)
∠MBC = ∠NCB (cmt)
BC: cạnh chung
⇒ ΔBMC = ΔCNB (c.g.c) (đpcm)
⇒ ∠BMC = ∠CNB (2 góc tương ứng)
hay ∠BMI = ∠CNI
Ta có: ΔABN = ΔACM (theo a)
⇒ ∠ABN = ∠ACM (2 góc tương ứng)
hay ∠MBI = ∠NCI
Xét ΔBIM và ΔCIN có:
∠BMI = ∠CNI (cmt)
BM = CN (cmt)
∠MBI = ∠NCI (cmt)
⇒ ΔBIM = ΔCIN (g.c.g) (đpcm)
c) Mk nghĩ là cm AI là tia p/g của ∠BAC thì đúng hơn đấy!!!!
Ta có: ΔBIM = ΔCIN (theo b)
⇒ IM = IN (2 cạnh tương ứng)
Xét ΔAIM và ΔAIN có:
AM = AN (gt)
AI: cạnh chung
IM = IN (cmt)
⇒ ΔAIM = ΔAIN (c.c.c)
⇒ ∠MAI = ∠NAI (2 góc tương ứng)
hay ∠BAI = ∠CAI
⇒ AI là tia phân giác của ∠BAC
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!
Nguồn : ADMIN :))Copyright © 2021 HOCTAP247