Mình giải ở bên dưới còn hình vẽ bạn xem trong ảnh:
1A
Vì tia OA nằm giữa hai tia OB và OC
=>góc BOA+góc AOC= góc BOC
=> 30°+góc AOC=70°
=>góc AOC=40°
1B
Vì tia Oy nằm giữa hai tia Oz và Ox
=> góc xOy+góc yOz=góc xOz
=>55°+75°=góc xOz
=> góc xOz=130°
2A
Gọi:
- góc xOz là a
- góc zOy là b
Ta có : a-b =40°
Vì a và b là 2 góc kề bù nên a+b=180°
Từ a-b=40°
⇒ b=a-40°
Ta có : a+b =180°
a+a-40° =180°
2a -40°=180°
2a = 180° +40°
2a = 220°
a=110°
⇒a-b=40°
110°-b=40°
b= 70°
⇒ a=110°; b=70°
⇒góc xOz= 110°
góc yOz= 70°
2B
Gọi :
- góc KOM là m
- góc MOH là n
n-m=20°
⇒ m=n-20°
Vì m+n=80°
n-20°+m=80°
2n = 80°+20°
2n =100°
n =100°:2
n =50°
n-m = 20°
⇒50° -m = 20°
m =30°
⇒ góc MOH= 50°
góc KOM= 30°
Đáp án:
Giải thích các bước giải:
1A. ^AOC=?
Vì OA nằm giữa OB và OC nên
^A0B+^AOC= ^BOC
30 + ^AOC= 70
^AOC =70-30=40 (độ)
1B .^xOz=?
Vì Oy nằm giữa Ox và Oz nên
^xOz=^xOy+^yOz
^xOz= 55+75=130 (độ)
2A. ta gọi ^xOz là a
^zOy là b
Theo đề ta có : a-b =40
Mà a và b là 2 góc kề bù nên a+b=180
Từ a-b=40 ⇒ b=a-40
Ta có : a+b =180
a+a-40 =180
2a -40=180
2a = 180 +40
2a = 220
a = 220: 2=110
Từ a-b=40
110-b=40
b= 110-40
b= 70
⇒ a=110; b=70
Vậy ^xOz= 110
^yOz= 70
2B. Gọi ^KOM là x
^MOH là y
Theo đề : y-x=20 ⇒ x=y-20
Mà x+y=80
y-20+y=80
2y = 80+20
2y =100
y =100/2
y =50
y-x = 20
50 -x = 20
x = 50-20=30
Vậy ^MOH= 50
^ KOH= 30
Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".
Nguồn : Wikipedia - Bách khoa toàn thưLớp 6 - Là năm đầu tiên của cấp trung học cơ sở. Được sống lại những khỉ niệm như ngày nào còn lần đầu đến lớp 1, được quen bạn mới, ngôi trường mới, một tương lai mới!
Nguồn : ADMIN :))Copyright © 2021 HOCTAP247